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MANUAL AND COMPILER ASSISTED METHODS 
FOR GENERATING ERROR DETECTING PARALLEL PROGRAMS 

Amber Roy-Chowdhury, Ph.D. 
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University of Illinois at Urbana-Champaign, 1996 
Prithviraj Banerjee, Advisor 

Algorithm-based fault-tolerance (ABFT) is an inexpensive method of incorporating fault-tolerance 

into existing applications. Applications are modified to operate on encoded data and produce en- 

coded results which may then be checked for correctness. An attractive feature of the scheme is 

that it requires little or no modification to the underlying hardware or system software. Previous 

algorithm-based methods for developing reliable versions of numerical programs for general-purpose 

multicomputers have mostly concerned themselves with error detection. A truly fault-tolerant al- 

gorithm, however, needs to locate errors and recover from them once they have been located. In a 

parallel processing environment, this corresponds to locating the faulty processors and recovering 

the data corrupted by the faulty processors. In this dissertation, we first present a general scheme 

for performing fault-location and recovery under the ABFT framework. Our fault model assumes 

that a faulty processor can corrupt all of the data it possesses. The fault-location scheme is an ap- 

plication of system-level diagnosis theory to the ABFT framework, while the fault-recovery scheme 

uses ideas from coding theory to maintain redundant data and uses this to recover corrupted data 

in the event of processor failures. Results are presented on implementations of three numerical 

algorithms on a distributed memory multicomputer, which demonstrate acceptably low overheads 

for the single- and double-fault location and recovery cases. 

For a class of algorithms performing affine transformations, we automate the process of generat- 

ing an error-detecting version at compile time. The compiler is used to identify loops that perform 

affine transformations on array elements. These loops are then checked by computing a checksum 

over the array elements being transformed and transforming the checksums appropriately, which 

typically results in much smaller overheads than checking the entire code by duplication. Portions 

of code in the program that are not affine transformations are checked by duplication. An exist- 

ing source-to-source compiler, Parafrase-2, has been modified to take in programs written in High 

Performance Fortran (HPF) and output an error-detecting version of the same. Data distributions 

for the new arrays and checksums introduced are specified by inserting additional HPF directives 

in the program. The modified program can then be input to a parallelizer for distributed memory 

machines, such as PARADIGM, to obtain an error-detecting parallel program.  We demonstrate 

in 



results on three numerical programs by executing the error-detecting versions generated by our 

compiler on a distributed memory multicomputer. 
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CHAPTER 1 

INTRODUCTION 

Massively parallel computers are being increasingly used to solve numerical problems with 

extremely large problem sizes. Despite the enormous computing power provided by these machines, 

the problem sizes are often so large that hours or even days may pass before a solution is obtained. 

Due to the large amounts of hardware involved, failures during the course of a computation are 

becoming increasingly likely. Some fault-tolerance measures are therefore needed to handle these 

failures. 

Algorithm-based fault tolerance (ABFT) is a method in which the algorithm is modified to 

detect errors introduced by faults in the underlying hardware. In many cases, it is possible to 

achieve fault tolerance with no modifications to the hardware or system software. Also, ABFT 

may be used to make an algorithm execute reliably on a computer that provides little support 

for fault tolerance in the hardware or system software. ABFT is also very effective in detecting 

transient or intermittent faults through their effects on data computed by the algorithm. These 

types of faults may be hard or impossible to detect through off-line testing. The basic approach 

is to apply some encoding to the data being operated on by the algorithm, modify the encoded 

data concurrently with the original data, and check that the encoding is preserved at various points 

during the execution of the algorithm. 

As an example, consider the problem of matrix multiplication C = AB. The simple algorithm 

may be made error-detecting by the addition of an extra row to A that is computed by taking 

the sum of all other rows of A. The product of the extra row of A with B yields an extra row in 

the product matrix G, which should equal the sum of all of the other rows of C in the absence 

of errors (due to roundoff errors, a small tolerance has to be allowed in the comparison). This 

matrix multiplication is illustrated in Fig. 1.1. This idea can be extended in an obvious manner 

in a multiprocessor environment with each processor checking the data on another processor, as 

is illustrated in Fig. 1.2. Note that for n x n matrices, only 0(n2) operations are required for 

creating, manipulating, and comparing checksums, while 0{n3) operations are used to compute the 

matrix multiplication. 

ABFT versions have been developed for several numerical algorithms. Early ABFT work in- 

volved modifying numerical algorithms executing on systolic hardware.  These schemes required 
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Figure 1.1 Illustration of matrix multiplication with checksums for error detection. 

the addition of extra hardware to the systolic array to perform computations on redundant data 

[1, 2, 3, 4]. Later, ABFT schemes were designed for parallel algorithms executing on general-purpose 

multicomputers that required no modification of the underlying hardware [5, 6]. Although some of 

the ABFT schemes for systolic hardware possessed some limited capability for error location and 

correction, most of the suggested schemes for general-purpose multiprocessors have been confined to 

error detection only. A few schemes for error location and correction [7, 8, 9] have been suggested, 

but many of these are quite theoretical in nature, are targeted toward systolic algorithms, or suffer 

from other drawbacks, and would be difficult to implement on a real multiprocessor system. Also, 

none of these schemes give a general methodology for error location as well as error correction for 

an arbitrary number of errors. 

We attempt to address this gap by proposing fault-location and -recovery schemes that arc 

easily applied to the ABFT framework. The fault-location strategy is an application of system- 

level diagnosis theory to the ABFT framework. The fault-recovery strategy is an application of 

coding theory to maintaining redundant data, which is used to recover corrupted data if faults occur. 

We demonstrate the practicality of our ABFT schemes by presenting results on implementations 

of the three parallel matrix algorithms modified to perform single-fault location and recovery mi 

a distributed-memory multicomputer. To demonstrate that even the multiple-fault location and 

recovery problem need not impose inordinately large overheads, we present results for the multiple- 

fault recovery case for one parallel matrix algorithm. 
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Figure 1.2 Parallel implementation of matrix multiplication with checksums for error detection. 



For a class of algorithms performing linear or affine transformations on the data, a natural 

encoding to choose is the checksum encoding [2], where a checksum is computed of the data being 

operated on by the algorithm. The checksum is then transformed concurrently with the compu- 

tations on the data elements, and at suitable points during the execution, the data elements are 

summed and compared with the transformed checksum. 

We have developed an automated, compile-time approach for generating error-detecting parallel 

programs based on the above idea. The compiler is used to identify statements implementing affine 

transformations within the program and automatically insert code for computing, manipulating, 

and comparing checksums in order to check the correctness of the code implementing affine trans- 

formations. Statements that do not implement affine transformations are checked by duplication. 

Checksums are reused from one loop to the next if this is possible, rather than recomputing check- 

sums for every statement. A global dataflow analysis is performed in order to determine points at 

which checksums must be recomputed. We also use a novel method of specifying the data distri- 

butions of the check data using directives provided by the High Performance Fortran (HPF) [10] 

standard so that the computations on the original data and the corresponding check computations 

are performed on different processors. 

The rest of this dissertation is organized as follows. Chapter 2 discusses prior work in the 

areas of ABFT and compiler-assisted generation of error-detecting programs. Chapter 3 discusses 

an extension of the algorithm-based fault tolerance methodology to perform multiple-fault loca- 

tion and recovery in a parallel processing environment. Chapter 4 describes the modification of 

three numerical algorithms using the ideas of Chapter 3 in order to make them fault tolerant and 

presents overhead and fault-coverage results on implementations of the fault-tolerant algorithms 

on a distributed-memory multicomputer. Chapter 5 discusses the design and implementation of 

our automated compile-time approach for generating error-detecting parallel programs. Chapter 6 

describes three programs that were used to demonstrate the generation of error-detecting code by 

our compiler and presents overhead results on implementations of these on a distributed-memory 

multicomputer. Finally, we present conclusions and future work in Chapter 7. 



CHAPTER 2 

RELATED WORK 

We describe related work in the field of algorithm-based fault tolerance and also describe 

compile-time approaches that have been taken by previous researchers in order to generate er- 

ror detecting programs. 

2.1    Algorithm-Based Fault Tolerance 

The original paper on ABFT was by Huang and Abraham [2]. This paper introduced the 

concept of real number codes that were used to encode the data (mostly using checksumming). 

Transformed data was also expected to preserve the property of the code; i.e., the sum over the 

transformed data should also equal the transformed checksum. Checksum coding schemes were 

devised for matrix multiplication executing on systolic hardware. Redundant processors needed 

to be added to the hardware to operate on the coded data. Location and correction of errors in 

a single matrix element were discussed. Partitioning schemes for achieving single error location 

and correction were discussed when the matrix size exceeded the number of processors in the 

systolic array. Applications of ABFT to LU factorization and matrix inversion were discussed: 

however, these latter schemes were limited to error detection only. Encoding the input data by 

using weighted checksums was introduced in [3]. By using this scheme, single error detecting and 

correcting schemes were devised for matrix multiplication, LU factorization, and matrix inversion 

executing on systolic hardware. A new form of encoding, the sum-of-squares (SOS) encoding was 

introduced for the FFT and QR factorization in [11]. Two algorithms for the FFT performing 

on-line error detection by employing checksums and fault location by performing data retry wore 

discussed in [1, 4]. A fault-tolerant algorithm for solving partial differential equations (specifically. 

Laplace's equation) on a mesh connected processor array was discussed in [12]. 

More recent research efforts have been to devise ABFT schemes for general-purpose multiproces- 

sors. Unlike schemes developed for systolic algorithms, these latter schemes do not require hardware 

modifications and only perform error detection. ABFT schemes for matrix multiplication, Gaussian 

elimination, and the FFT for a hypercube multicomputer have been discussed in [6]. An ABFT 

version of a Givens QR factorization for a hypercube multicomputer has been discussed in [13] and 

for the singular value decomposition (SVD) in [5]. A fault-tolerant bitonic sorting algorithm based 



on verifying that intermediate sequences sorted by a processor are themselves bitonic and contain 

exactly the expected elements has been discussed in [14]. Error-detecting parallel algorithms for 

iterative solvers for partial differential equations (PDEs) have been discussed in [15] and [16]. 

Practical ABFT techniques for numerical applications typically check the integrity of floating- 

point computations by verifying the equality of two quantities, which are theoretically identical 

but have been computed in two different ways. Due to differences in the manner in which roundoff 

accumulation occurs in the computation of these theoretically identical quantities, a small tolerance 

has to be allowed during their comparison. For a practical implementation of an ABFT scheme, 

close attention has to be paid to choosing this tolerance, because too large a value could cause errors 

caused by hardware faults to go undetected, while too small a value could cause roundoff errors to 

trigger false alarms. Finding a good value for the tolerance is by no means an easy task since the 

accumulated roundoff error is dependent not only on the algorithm and problem size, but also on 

the specific data set. An experimental approach for choosing the tolerance was adopted in [5, 6]. 

This approach requires rerunning the experiments for computing the tolerance value each time the 

characteristics of the data set, such as the size and the range, change significantly. An approach 

based on extracting the mantissas of the floating-point numbers into integers and applying integer 

operations (for which no roundoff errors occur) has been described in [17]. However, this method 

could only check floating-point multiplications using a checksum approach. Floating-point additions 

had to be checked against a tolerance, as before.   In [18], error expressions were derived for the 

quantities being compared. These error expressions were used at runtime to keep track of roundoff 

error accumulation.   Although the error computation was sensitive to the data set and problem 

size, the expressions needed to be derived separately for each algorithm under consideration. 

The problem of analyzing ABFT schemes with a view to determining their error-detecting and 

locating capabilities was introduced in [19]. A tripartite graph model was proposed with nodes 

corresponding to processors, data, and checks, with edges between processors and data or between 

data and checks, formalizing the relationship between processors and the data elements produced by 

them and checks and the data elements checked by them. Lower and upper bounds were obtained 

on the number of processors necessary and sufficient to achieve a certain level of fault detection or 

location. These bounds were further improved in [20]. The same graph model has been used to 

study the design problem for ABFT, that is, to achieve a certain specified level of error or fault 

detection or location by introducing as few checks as possible [21, 22, 23, 24]. The restriction 

that each check be responsible for checking a constant number of elements was removed in [21]; 



however, this general design problem was shown to be NP-hard even when only one fault needed to 

be detected. However, using the above models to analyze or synthesize ABFT versions of parallel 

algorithms executing on general multicomputers is a difficult task. Because in a parallel realization 

of an algorithm on a message-passing multicomputer, the relationships between the processors, data 

elements, and checks are hard to formalize into the above graph model. Data may move around in 

messages, and data from other processors may be used for updating local data; it is not clear how 

to map this to a model that assumes that a fixed relationship is imposed by the algorithm between 

processors, data, and checks. None of the researchers have attempted to present an implementation 

of a fault-tolerant parallel algorithm by applying the above design techniques, and there are also 

no reports on mapping a parallel algorithm of reasonable complexity into the graph-based model. 

Most of the literature on ABFT has concentrated on the problem of error detection rather than 

correction.   In the early papers on ABFT [2], error location and correction were achieved for a 

matrix multiplication algorithm by the addition of row and column checksums to the matrix. This 

method could detect and correct a single erroneous element in the matrix and was not extended 

to deal with locating and correcting multiple erroneous elements.   The problem of locating and 

correcting a single faulty element for the result of a matrix multiplication algorithm was addressed 

in [3] by the introduction of weighted checksums.   This scheme was extended in [8] to perform 

single error location and correction for LU decomposition and QR factorization algorithms.  The 

problem of choosing weights for the weighted checksum scheme in order to detect and correct more 

than a single error was studied in [7]. The weights for the weighted checksums were chosen from a 

Vandermonde matrix, and the decoding scheme was able to locate and correct double errors in a 

matrix. The ingenious decoding procedure, however, was not generalized for locating and correcting 

an arbitrary number of errors.  Also, since entries in a Vandermonde matrix typically span wide 

ranges for even modest matrix dimensions, it is possible that the decoding process could run into 

numerical difficulties. A probabilistic method for determining data-check assignments to obtain a 

i-error locating algorithm, where t can be arbitrary, was given in [9]. However, the problem of error 

correction was not addressed. 

In this dissertation, we devise a general method for error location and correction for an algorit hm 

executing on a multiprocessor system where up to t processors can be faulty. The ideas for error 

location are borrowed from system-level diagnosis theory. The idea for error correction is b;i>ed 

on weighted checksums and is somewhat similar to the idea developed in [7]. However, since we 

decouple the error location and correction problems, we are able to give a general procedure tor 



recovering from errors introduced by t faulty processors, where t is arbitrary. Also, our weights 

are chosen from the parity check matrix of a Reed-Solomon code. For the same dimension, the 

elements of such a matrix would span a much smaller range than a Vandermonde matrix and would 

be less likely to cause numerical problems. In contrast to the terror locating method developed in 

[9], our approach is deterministic rather than probabilistic. Another difference of our work from the 

work of [9] is that in the latter approach, the data that a particular check is assigned to check can 

be somewhat arbitrary because of the probabilistic approach used for data-check assignments. In 

a multiprocessor system, the computation of the checks would lead to a large number of messages 

being exchanged in an irregular pattern, with potentially heavy communication overheads. In 

the approach we describe in this dissertation, heavy communication overheads are usually not a 

problem for programs exhibiting regular communication behavior. 

2.2    Compiler-Assisted Generation of Error-Detecting Programs 

Other researchers have also looked at the problem of automatic generation of error-detecting 

code at compile time. The approach of [25] and [26] was to utilize the Very Long Instruction Word 

(VLIW) compiler to insert redundant operations into functional units that would otherwise be 

idle. Fault diagnosis could also be done by analyzing functional unit mismatches. This approach • 

required hardware modification in the form of comparators to compare the outputs of the functional 

units. Also, it was tied to a particular kind of processor architecture, viz., VLIW processors. This 

technique could be used in conjunction with ours, since duplicated code is produced by our compiler 

for portions of code that do not implement affine transformations. The duplicated instructions could 

then be scheduled to utilize idle slots in the functional units of the VLIW processor. 

Another approach to compiler-assisted fault detection for parallel programs was discussed in 

[27, 28]. Here, statements were duplicated in Single Program Multiple Data (SPMD) parallel 

programs and executed on processors that would otherwise be idle. However, in cases where the 

overhead for duplication would be too great, for example in loops that could be executed in parallel 

keeping each processor busy, only the last statement executed by each processor was duplicated 

and compared on another processor. While this may suffice in detecting permanent faults, it is 

not adequate for transient fault detection. Again, this technique could be used in conjunction with 

ours for portions of code that would be checked by duplication using our approach. 

An automated approach for identifying linear transformations in a program and generating the 

code for computing and transforming checksums at compile time was first proposed in [29, 30]. 



Our approach builds on this idea, while improving on it in several ways to make it viable. The 

approach of [29] analyzed one statement at a time instead of the entire program, leading to potential 

inefficiencies in checksum computation. Also a full-fledged implementation based on their ideas 

was not performed, leaving the feasibility and usefulness of their approach unresolved. In the 

work reported in this dissertation, we improve on the ideas suggested in [29] in several ways and 

implement them by augmenting a state-of-the-art parallelizing compiler. 

The major improvements of our work over [29] are as follows. We are able to generate checksum- 

based checks for code that performs affine transformations, which are more general than linear 

transformations. To be able to generate a checksum-based check for a statement, it must possess a 

suitable syntactic structure, and additionally satisfy some dependence conditions. We attempt to 

reuse checksums from one loop to the next instead of recomputing checksums for every statement. 

To determine if this is possible, we perform a dataflow analysis on the entire program. Finally, 

we use data distribution information provided by the original program through HPF directives 

to specify data distributions for the checksums (or any other extra data that may be needed to 

check the original computation) in such a manner that a checksum and the portion of data being 

checked reside on different processors. Such data distribution specifications, together with the 

owner-computes rule [31], ensures that the check for the data owned by one processor is performed 

on a different processor, thus increasing the likelihood of detecting single-processor failures. 



CHAPTER 3 

ALGORITHM-BASED FAULT LOCATION AND RECOVERY 

Most ABFT versions for general-purpose multicomputer have performed only error detection. 

However, in the case of intermittent or permanent errors, it is also desirable to locate the faulty- 

processor so that it may be repaired or replaced. Furthermore, in the case of a real-time application, 

it is desirable that the correct data be recovered by performing very few additional operations 

(without having to restart and rerun the entire application), even though this might mean some 

extra overhead during normal operation. In this chapter we describe a method for locating and 

recovering from t faults, where t is a design parameter. Section 3.1 describes the location strategy 

while Section 3.2 describes the recovery strategy. Section 3.3 presents an example for multiple-fault 

location and recovery for a generic algorithm. 

3.1    Location 

We describe a methodology for error location that is suitable for application to linear algebra 

applications. In particular, we have demonstrated it on three parallel numerical algorithms - matrix 

multiplication, QR factorization, and Gaussian elimination. The location method is directly derived 

from the theory of system-level diagnosis introduced in [32]. It is well-known that a one-step t- 

diagnosable system must satisfy the following two constraints: 

a. There must be at least 2t + 1 nodes in the system. 

b. Each node must be diagnosed by at least t other nodes. 

Before we proceed further, we recapitulate the definition of a Dgtt system [33, 34]. 

Definition 1 A Dg,t system is a directed graph G = (V, E) where an edge eij € E exists from a 

vertex V{ € V to a vertex Vj £ V if and only if j = (i + 5m) mod n where n is the number of vertices 

in G, 5 is an integer, and m = 1,2,..., t. 

It is well-known [33, 34] that for a class of D$j systems with n = It + 1 and in which 6 and n 

are relatively prime, the conditions for t-fault diagnosability stated above are not only necessary 

but also sufficient if we assume that the vertices of the graph represent the processing nodes in the 

system and the edges represent the testing links. Such systems are thus optimal both with respect 
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Figure 3.1 An optimal 2-fault diagnosable system. 

to the number of processing nodes as well as to the testing links. An example of a £>i,2 system 

with n = 5, i.e., an optimal configuration for one-step 2-fault diagnosability, is shown in Fig. 3.1. 

An ABFT system may be modified to perform t-fault location as follows. The set of p processors 

is grouped into ^ disjoint sets consisting of It 4-1 processors each. Each such set will be referred 

to as a check group. The case when p is not divisible by 2i + 1 is easy to handle by making some 

of the check groups contain It -f 2 processors. The checking assignments for a check group may be 

chosen to correspond to the checking assignments of a Ds,t system. In an ABFT system, however, 

it is possible that a processor may need to use data from other processors either to update its own 

data or the encoded data required to check the computations of the other processors it is assigned 

to check. In a message-passing distributed system such as the one on which we conducted our 

experiments, use of data on other processors corresponds to communication of the required data 

via a message. Assume that processor proc receives a message from processor prod containing data 

needed by proc for its own updates. Before using this data in its own updates, processor proc needs 

to subject this data to a check. However, checks on this data can be conducted on the t processors 

checking the data of processor proc' (to achieve this, it is necessary that the data to be checked 

be communicated to the relevant processors by either proc or proc'). Processor proc proceeds to 

use this data in its updates only if all t checks pass. If t faults affect the checking processors in 

such a way that all of the checks pass, proc1 is fault-free by the t fault assumption, and thus the 

data communicated by proc1 is uncorrupted and may still be used by proc in its updates. If a fault 

affects processor proc' and causes the communicated data to be corrupted and at most t faults 
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occur, then at least one check of the communicated data is performed by a fault-free processor 

and is guaranteed to fail. In this case, normal computations are stopped, and a checking phase is 

initiated in which each processor checks the data of the processors it is assigned to check. Unless 

the error in the communicated data was due to a transient error, it is highly likely that faulty 

processors would have corrupted some of their data. (If all checks pass, the communicated data 

was likely corrupted by a transient fault while in transit, and the data may be recommunicated). 

Since the syndrome corresponding to any t or fewer faulty processors is guaranteed to be unique 

in a Dg,t system, the t faulty processors may be identified. (For simplicity of implementation, we 

assume the existence of a reliable host processor that receives and interprets the syndrome via a 

table lookup, although any of the several more sophisticated centralized or distributed diagnosis 

algorithms in the literature [34] could be used instead). The normal ABFT checks are carried out 

as usual at appropriate points in the algorithm. 

3.2    Recovery 

The extension to perform recovery from t faults uses ideas from the theory of error correcting 

codes [35] and is primarily applicable to algorithms that perform linear operations on data. A 

wide class of numerical algorithms falls into this category, such as matrix multiplication, Gaussian 

elimination, QR factorization, FFT, iterative linear system solvers, and so forth. We first introduce 

the following lemma which is very useful to demonstrate the applicability of coding theoretic results 

over certain finite fields to the field of real numbers. In the following lemma, GF{q) denotes the 

finite field with q elements. 

Lemma 1   Vectors that are linearly independent over GF(q) (q prime) are also linearly indepr.ndt-tit 

over the field of real numbers. 

Proof. Refer to [36]. D 

Let us consider a system with a total of p processors. We partition the set of p processors into 

two sets, one consisting of processors 0 through p — t — 1, which we denote by V, and the other 

consisting of processors p — t through p — 1, which we denote by £.' In the rest of the section we 

will refer to the processors in set V as computation processors while we will refer to the processors 

in set £ as check processors. 

The method of data distribution and the fault-recovery procedure described in the remainder 

of the section guarantee recovery from t failures if all failures are confined to set V, and from 

12 



2(vT+T - 1) failures if failures can occur in both sets V and £. We would like to mention at the 

outset that, in fact, many correctable failure patterns exist where the number of failures exceeds 

the lower bound for the second case mentioned, and, in fact, our correction algorithm is able to 

correct any correctable failure pattern involving fewer than t faulty processors even when faults 

can affect processors from both sets V and £. 

Let us denote the data owned by the ith computation processor by Cl and the data owned by 

the zth check processor by Si. Here Cj is assumed to be an m x n matrix. A large class of problems, 

and in particular each of the problems mentioned at the start of this section, can be structured to 

fall into this category. We assume that at all steps during the computation, the following invariant 

is maintained: 
p-t-i 

sj =   E wJici> 0<j<t-l (3.1) 

In other words, the data on the check processors is a weighted sum of the data on the computation 

processors. For an algorithm that performs linear operations on the data, the above invariant can 

be maintained by distributing weighted sums of the input data to the check processors at the start 

of the algorithm, and then having the check processors perform the same linear transformations on 

their data as the computation processors. We now indicate a suitable choice of weights to maximize 

chances of recovery following processor faults. We introduce the following notation: 

5     =   (So S\ ... St-i) 

C     =   (Co C\ ... Cp-t-i) 

W   = 

I      Woo ^01        •■•       Wop-t-l      * 

Wi0 »11        ••■       Wip-t-l 

\ Wt-lO     Wt-n     •••     Wt-lp-t-l   J 

(3.2) 

We have the following result. 

Lemma 2 Let a be a primitive element over GF(q), where q is any prime greater than p-t. Let 

the entries of W be chosen so that Wij = alj mod q. Consider any submatrix WSM of W consisting 

of any c consecutive rows of W. Then every c columns of WSM are linearly independent over the 

field of real numbers. 

Proof (For the properties used in the following proof, the reader is referred to [35].) 
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Replacing each Wij by a1-7 in WSM, we find that WSM consists of the first p - t columns of the 

parity check matrix of a (q, q — c) Reed-Solomon code. A (q,q — c) Reed-Solomon code has minimum 

distance c + 1, and so any c columns of its parity check matrix HRS(qq_c) are linearly independent 

over GF(q). Since WSM consists of the first p — t columns of HRS(qtq-c), any c columns of WSM are 

also linearly independent over GF(q). By Lemma 1, any c columns of WSM are linearly independent 

over the field of real numbers as well. D 

The following two corollaries follow immediately from Lemma 2. 

Corollary 1 Every t columns of W are linearly independent over the field of real numbers. 

Corollary 2 Every ex c submatrix of WSM is of full rank. 

As in the algorithm for the location of multiple faults described in Section 3.1, the p processor 

system is partitioned into 5^— disjoint check groups consisting of It 4-1 processors each, with the 

checking assignments in each check group chosen to correspond to an optimal Ds,t system. Note that 

as far as the checking assignments for fault location are concerned, no distinction is made between 

check processors and computation processors; i.e, the redundant data on the check processors is 

subjected to the same ABFT checks as the original data on the computation processors. As before, 

all communicated data is subjected to a check before its use in the manner of Section 3.1. The 

invariant of Eq. (3.1) is thus correctly maintained on nonfaulty processors as long as the checks on 

the communicated data pass. However, if either a check on the communicated data or a regular 

ABFT check fails, the fault-location algorithm is executed to determine the set of faulty processors 

that have corrupted their data. Once the faulty processors have been located, data recovery may 

be initiated as follows. 

Let the set of faulty processors be denoted by T. Let us define two subsets Tp = T f| 'P 

and TE = Tf]£. Let \Tp\ = uP and \TE\ = VE, where we use the \X\ notation to denote 

the cardinality of a set X. Let the indices of the processors in Tp be fp0,fpl,---,fpu _L, the 

indices of the processors in TE be JEOIIEI-, ■ ■ ■ ,/£„B_n the indices of the processors in V — Tp 

be gp0,gpx,- ■ • ,5Pp-t-,p_i, and the indices of the processors in £ - TE be gE0,9Ei,- ■ ■ ,9Et-»E-i- 

Let us consider the system of matrix equations which may be derived from the system of matrix 

equations in Eq. (3.1) by deleting equations corresponding to indices in TE and moving matrix 

terms corresponding to indices in V — Tp and £ — TE to the right. 

Up — 1 p—t — Vp — l 

2^    WfPi9Ej
<^fPi 

=        SgE,    ~ 2_j WgPigE,Cgp., 
2=0 2=0 

0 < j < t - vE - 1 (3.3) 
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We notice that in Eq. (3.3), the left hand side involves CVs which are unknown since they were 

to have been computed by the processors in the faulty set TP, while the right hand side involves 

known CVs and 5/s since these were computed by processors in nonfaulty sets V - TP and E-TE. 

Thus we have a system of t - vE matrix equations in vP matrix unknowns that may be solved if 

there exist at least vP linearly independent equations involving the unknowns in the system. 

Let us further denote by C?p the matrix consisting of only those CVs in C with indices in TP 

and by Cgp the remaining CVs in C. Let us denote by WR the reduced matrix constructed by 

deleting from W all rows corresponding to indices of processors in TE and a reduced matrix SR 

by deleting from 5 all S/s corresponding to indices of processors in TE. Let us now define WR 

to be the matrix consisting of only those columns of WR with indices corresponding to processors 

in TP and WRg to be the matrix consisting of the remaining columns of WR. Then, Eq. (3.3) may 

be represented more succinctly in matrix notation by 

WRf ®mxn Cjrp = SR- WRg ®mxn Cgp (3.4) 

In Eq. (3.4), the ®mxn notation is used to indicate that each element of WR} and WRg multiplies 

an entire m x n block of C?p and Cgp, respectively, unlike normal matrix multiplication, where 

each element multiplies asingle element (i.e., ®ixl is equivalent to normal matrix multiplication). 

WRf is a matrix of dimensions (t - uE) x vP. The system represented by Eq. (3.4) possesses 

a unique solution if and only if the rank of WR; equals vP. Eq. (3.4) can be constructed using 

only data from nonfaulty processors and leaving the data from faulty processors as unknowns to 

be solved for. Both sides of Eq. (3.4) are premultiplied by W%  to get the new system 

{WlfWRf) ®mxn CTp = Wl; ®mxn (SR - WRg ®mxn Cgp) (3.5) 

An LU decomposition of the vP x vP matrix {W%fWRf) is then performed. (Note that the system 

defined by Eq. (3.5) is symmetric, so that its LU decomposition may be obtained by using only half 

of the operations and memory for a general unsymmetric system). If the rank of (Wj WR{) is ur. 

i.e., the matrix is of full rank, then its LU decomposition does not lead to any 0 elements occurring 

on the diagonals of either triangular matrix in the decomposition of (Wj WRf). (If roundoff errors 

are of concern, one may attempt to first perform the LU decomposition over GF(q) and proceed 

with the LU decomposition over the field of real numbers only if the decomposition over GF[q) 

succeeds, since by Lemma 1, linear independence over GF(q) guarantees linear independence over 
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the field of real numbers). All unknown elements can then be recovered by backsolves. The matrix 

(Wz Wnf) is of full rank if and only if Wl has rank uP [37]. So in these cases, the recovery from 

the pattern of faulty processors is possible. 

We now examine in which cases the matrix (Wp WRf) is of full rank since in these cases, 

corrupted strips of C may be recovered. 

Theorem 1 If only processors in V fail, then t faults can be tolerated by the algorithm for multiple 

fault recovery. 

Proof: If only nodes in V fail, then the set jFg is empty. Thus WR = W, and therefore WR(, for 

this fault pattern consists of up columns of W, where up < t. By Corollary 1 to Lemma 2, the 

columns of WR{ are linearly independent. Thus {W^WR{) has full rank and Eq. (3.5) may be 

solved to recover all corrupted strips of C. D 

Theorem 2  The algorithm for recovery from multiple faults can tolerate any pattern involving 

2(y/t -f- 1 — 1) or fewer processors. 

Proof: Assume that a total of u = up. + up, faults have occurred. Consider the matrix WR, which 

is constructed by deleting all rows in W corresponding to indices in the set Tp. Since W has t 

rows, no matter which up rows of W are deleted, WR will contain at least Z-^. consecutive rows 

that were also consecutive in W. (The minimum occurs when the deleted rows are evenly spaced). 

Let the matrix formed by these consecutive rows be denoted by W. By Lemma 2, every /"^ 

columns of W are also linearly independent. Thus if up < ,^,, the up columns of WR{ are 

guaranteed to be linearly independent, and thus WR{ has rank up. Hence, the matrix (Wj WR{) 

is of full rank, and Eq. (3.5) may be solved to recover the corrupted C,'s. Thus in the event that up 

check processors have failed, the complete recovery can be performed provided fewer than (f,~+gn 

computation nodes have failed; i.e., it can tolerate a total number of failed nodes u < up +  t~UE 

("E + t) 

Treating i/asa function of up, we find that it possesses a minimum at up = %/i + 1 — 1 and the 

value of u at this minimum is 2(\Jt + 1 — 1).  Thus any fault pattern involving 2{\Jt + 1 — 1) or 

fewer nodes can be tolerated. G 

Note that the proofs of Theorems 1 and 2 suggest a simplification of the error recovery strategy 

outlined earlier. In the event that up faults affect the set V, and the total number of faults u is 

less than 2{y/t 4-1 — 1), we are guaranteed to find up consecutive nonfaulty processors in the set £. 

By restricting our attention to the portion of W on these processors only, we find that the columns 

corresponding to the indices in Tp form a up x up submatrix, which, by Corollary 2 to Lemma 2, 
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is of full rank. Thus we may obtain vP equations involving the corrupted data as unknowns that 

are guaranteed to be linearly independent without having to construct (W% WRf). In the event 

that faults affect only V and v < t such faults occur, a linearly independent system involving the 

corrupted data as unknowns may be obtained by simply utilizing the weighted checksums on any 

v consecutive processors in £. However, in the event that the number of faults exceeds the bounds 

of Theorems 1 and 2, the general procedure outlined earlier may be used, since it may turn out 

that {WRfWRf) is of full rank, and Eq. (3.5) may be solved to recover the corrupted data. 

Once the corrupted data has been recovered, the computations of the faulty processors are 

taken over by the nonfaulty check processors, which then perform normal computations instead of 

check computations. This recovery strategy is fast and simple, but leaves the system vulnerable to 

further failures. At the expense of complicating the recovery procedure, future failures may also be 

tolerated if the surviving processors are again partitioned into check and computation processors, 

the data partitioned and redistributed to the computation processors, and the weighted sums of 

the data on the computation processors distributed to the check processors. 

3.3    Example 

To clarify the methodology for algorithm redesign to perform multiple-fault location and re- 

covery, let us consider a generic algorithm Q designed for execution on a 14-processor system. 

Assume that 3-fault location and 2-fault recovery are required. The 14 processors in the system 

are partitioned into two subsets, with processors 0 through 10 comprising the set of computation 

processors and processors 11 through 13 comprising the check processors. Assume that the initial 

data distribution consists of m x n matrices A0 through Aw on processors 0 through 10, respec- 

tively. Processors 11, 12, and 13 compute weighted checksums 5b, Si, and S2 of the data on the 

other processors by using the following equations: 

So   =   A0 + Ai + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + ^i0 

Si   =   A0 + 2Ai + 4A2 +8A3 + 3A4 + QA5 + 12A6 + 1L47 + 9A8 + 5A9 + 10AW 

S2   =   A0 + 4Ai + 3A2 + 12A3 + 9A4 + 10A5 + A6 + AA7 + 3A8 + 12Ag + 9AW 

The weights chosen comprise the first 11 columns of a (13,10) Reed-Solomon code. Since we want 

triple-fault location, the 14 processors are grouped into two sets, one containing processors 0 tlin.ui;!i 
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Figure 3.2 Data distribution and error-pattern example. 
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6 and the other containing processors 7 through 13. Each processor keeps checks on the data on 

three other processors (these checks can be checksums or some other appropriate encoding of the 

data that can be easily maintained), where the processors checked by each processor are assigned 

in correspondence with the edges of a .Di,3 system. Now suppose that after some transformations 

have taken place, processors 1, 2, and 13 fail. Checks on processor l's data fail on processors 0, 6, 

and 5, checks on processor 2's data fail on processors 0 and 6, and checks on processor 13's data 

fail on processors 10, 11, and 12, while the outcomes of the checks on processors 1, 2, and 13 can 

either pass or fail. However, the syndrome uniquely identifies processors 1, 2, and 13 as the faulty 

processors. The data distribution, corrupted data and failed checks are shown in Fig. 3.2. Now 

processors 11 and 12 form a pair of consecutive nonfaulty check processors. Considering only the 

checksums on processors 11 and 12, we may construct the following linear system: 

Al+A2   =   So- (A0 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + Aw) 

2Ai+4A2    =   Sx - (A0 + 8A3 + 3A4 + 6^5 4- 12A6 + 1L47 + 9AS + 5A9 + 1(L410) 
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where we abuse the notations A{ and Si by using them to represent the transformed data as well 

as the original data. The right-hand side of the above equation consists of matrices computed by 

nonfaulty processors, and thus the corrupted data Ax and A2 may be recovered by solving the above 

linear system. Once the corrupted matrices have been recovered, processors 11 and 12 take over 

the computations of processors 1 and 2 for the rest of the computation. This makes the system 

susceptible to further failures; however, if fault tolerance is desired during the remainder of the 

computation, three of the surviving processors may be designated as check processors, the data 

may be redistributed on the rest of the surviving processors, and new weighted checksums may be 

computed before proceeding with the rest of the computation. 

3.4    Summary 

In this chapter, we have discussed a general methodology to be used in conjunction with the 

ABFT framework in order to perform error location and recovery of up to t faults, where t is a 

design parameter. Owing to our use of well-known results from the theory of system-level diagnosis 

and coding theory, our approach is considerably simpler to implement, as well as being more 

general, than earlier approaches for error location and correction in the ABFT framework. In the 

next chapter, we will demonstrate the practicality of our approach by designing error-locating and 

correcting versions of three parallel numerical algorithms using the methodology devised in this 

chapter. 
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CHAPTER 4 

IMPLEMENTATION AND RESULTS FOR 

ALGORITHM-BASED FAULT LOCATION AND RECOVERY 

To more clearly demonstrate the applicability of the proposed ABFT techniques for fault loca- 

tion and recovery discussed in Chapter 3, we discuss the modification of three parallel numerical 

algorithms (matrix multiplication, QR factorization, and Gaussian elimination) to achieve single- 

fault location and recovery and present results for each algorithm on a distributed-memory multi- 

computer. 

4.1    Fault-Tolerant Algorithm Description 

4.1.1     Matrix multiplication 

We consider the parallel execution of AB = C, where A, B, and C are dense nxn matrices. The 

basic serial code for matrix multiplication is shown in Fig. 4.1. We assume that A is distributed 

blockwise by rows and B is replicated on all processors. Other data distributions (such as one in 

which B is distributed blockwise by columns) can also be easily handled. We also assume that n is 

divisible by p — 1. We denote the quantity -^ by m. We assume that the numbering of both of the 

processors as well as the rows and columns of the matrices starts from 0. We designate the p — 1th 

processor to be a check processor and the rest of the processors to be computation processors, 

using the terminology introduced in Chapter 3. Let us denote the strip of A owned by the ith 

computation processor by A*. Ai consists of rows mi through m(i +1) — 1. Prior to the start of the 

for(i=0;i<n;i++) 
for(j=0;j<n;j++) 
{ 

C[i][j]  = 0; 
for(k=0;k<n;k++) 

C[i][j]  = C[i][j]  + A[i][k]   * B[j][k]; 
} 

Figure 4.1 Matrix multiplication program. 
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execution of the matrix multiplication algorithm, an additional strip Ap_i = YHZQ A is computed 

and communicated to the check processor (note that if only single fault location is desired, this 

step may be omitted, and instead, A may be distributed over p instead of p - 1 processors). We 

assume for clarity of presentation that p is divisible by three. The set of p processors is now 

divided into | check groups of three processors each. Within each check group, the processors 

are ordered according to processor identifiers. Suppose check group i contains processors go\gi\ 

and g\ . The processors in each check group are logically configured in a directed cycle. We shall 

speak of succeeding or preceding processors given a particular processor proc, with the ordering 

being implied by the directed cycle of the check group to which proc belongs. Prior to the start 

of the execution of the matrix multiplication algorithm, each processor receives and computes the 

checksum of the rows of the strip of A belonging to its succeeding processor.   Thus, in matrix 
(i) notation, processor g^ ' computes 

{acs (,, )T = eTA{t) (4.1) 
yO' + l)mod3 y0 + l)mod3 

where eT denotes the all-l's row vector of length m, and (acs m )T denotes the checksum row of A m. 
9k' 9V 

The check processor is grouped into a check group and participates in the checksum computation 

in the same manner as the computation processors. Note that the checksum assignments in a check 

group actually correspond to the check assignments of a D^i system. The data distributions of 

the matrices and checksums on a 6-processor system are shown in Fig. 4.2. The processors then 

proceed to execute the matrix multiplication algorithm in parallel. Thus the following computation 

is performed by processor <r- : 

,,.; (4.2) 

*(j+l)mod3 / \ »0 + 1)111003 

Following the computation of C (;>, processor gy also computes the checksum of C (<>, which we 

denote by (ccs (o)   . In matrix notation, we have 
9j 

{cc~sn))
T = eTCu) (4.:5) 
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Figure 4.2 Data distribution for fault-tolerant matrix multiplication. 

ß) (0 Next, processor g)j   sends ccs (,) to processor 5(,—i)mod3" After processor <r-   receives ccs 

ß) 
'0 + l)mod3 

from processor <7(7+nmoci3> i* compares ccs to and ccs (o . In the absence of processor 
'(j + l)mod3 3(j+l)mod3 

failures, ccs (o must equal ccs (*> to within a tolerance.   (The tolerance is necessary 
#(j + l)mod3 S(j + l)mod3 

due to the accumulation of roundoff errors in the computation of ccs <o and ccs (,-) 
5(j + l)mod3 ^(j + l)mod3 

For a discussion of a tolerance determination methodology, see [38]). In the event of a single 

processor failure, the checksum test for the strip of C computed by the faulty processor fails on the 

processor preceding it in its check group. The checksum test on the faulty processor itself may fail 

or pass. In either case, the test on the processor immediately preceding the faulty processor fails, 

and so the syndrome for any single fault within a check group is unique. The identity of the faulty 

processor may thus be determined by the host after receiving the results of the checksum tests of 

each processor. In fact, if the fault pattern is such that only one processor in each check group 

is faulty, such fault patterns can also be detected and located. In the event of a single processor 

failure, if the failed processor happens to be the check processor, nothing needs to be done as the 

entire matrix C may be assembled from the remaining processors. In the event the failed processor 

is one of the computation processors, say processor / (/ ^ p — 1), the corrupted strip C/ may be 

recovered by cooperation between the remaining processors by using the following equation: 

p-2 

Cf = Cp-i —    )\   d (4.4) 
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4.1.2    QR factorization 

The problem of QR factorization is to factorize annxn matrix A into an orthogonal matrix 

Q and an upper triangular matrix R, i.e, A = QR, which is achieved by premultiplying A by a 

series of orthogonal matrices 0(1), 0(2),..., 0(jV). Two common orthogonal transforms are Givens 

and Householder transforms [39]. Givens transforms zero out a single element at a time while 

Householder transforms zero out an entire column at a time. We developed a parallel algorithm 

based on Householder transforms. In this case, we denote the matrices O^ by H^k\ with N = n-1, 

where the iJ^'s are called Householder matrices. At the start of the algorithm, the initializations 

A^ > = A and Q' ' = Inxn are performed. These matrices are successively transformed to obtain 

R and QT. The kth Householder transform may be represented as A^ = H(fc)J4^-1^ and Q^ = 

H^Q(k~l\ We first describe the kth Householder vector v^ as 

«(fc)=4--i!!nfc-i+II «?.-£„*-! Ibex (4.5) 

(k — l) 
where ak_l'nk_i denotes the vector formed by the elements in rows k - 1 through n of column 

k - 1 of A^'V, || ||2 denotes the 2-norm, and e\ is the column vector of length n — k + l with a 1 

as its first element and O's elsewhere. We may define a.n n-kxn-k matrix H^ by the following 

equation: 

Hsm - ln.k+lxn_k+l - 2^k)pv{k) (4.b) 

The matrix H^ is obtained by replacing the lower right n-k + 1 xn- k + 1 submatrix of /„ . „ 
(k) 

by Hsm, as shown below. 

H(k) In-k+lxn-k+l       O 

o       Ä&! 

It is easy to verify that H^ is orthogonal and that it zeroes out the elements below the 

diagonal of the k - 1th column of A(k~lK It is to be noted that a Householder transform would 

not actually be performed by constructing the Householder matrix and then performing a matrix 

multiplication. The actual implementation would be based on the code shown in Fig. 4.3. which 

has the same effect. Orthogonal transforms have the property that 2-norms of the columns Ur'uvj, 

transformed are preserved. To devise fault-locating and fault-tolerant versions of the QR algorithm, 

error detection must first be performed. Error detection is achieved by maintaining two invariants, 

the sum-of-squares of each column of A^ and Q^ as well as the row checksum of each row of 
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/* Q is initialized to I */ 

for(k=0;k<n-l;k++) 

{ 

/* Compute Householder vector */ 

vTv = 0; 

for(i=k;i<n;i++) 

{ 

v[i]  = A[i][k]; 
vTv = vTv + A [i] [k]   * A [i] [k]; 

} 
v[k]  = v[k]  + sqrt(vTv); 

/* Update A */ 
for(j=k;j<n;j++) 
{ 

vTa = 0; 
for(i=k;i<n;i++) 

vTa = vTx + v[i]   * A[i] [j] ; 
for(i=k;i<n;i++) 

A[i][j]  = A[i][j]  - 2.0 * vTa * v[i]  / vTv; 
> 

/* Update Q */ 
for(j=0;j<n;j++) 
•C 

vTq = 0; 
for(i=k;i<n;i++) 

vTq = vTq + v[i]   * q[i] [j] ; 
for(i=k;i<n;i++) 

Q[i][j]  = QCi][j]  - 2.0 * vTq * v[i]  / vTv; 
} 

} 

Figure 4.3 QR factorization program. 
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A(k) and QW . The parallel single-fault tolerant QR algorithm is based on a column cyclic data 

distribution of the matrices Q^ and A^ over p - 1 processors (one less than the total available), 

with processor p - 1 being assigned the task of transforming a redundant strip of data. Thus 

processor i (0 < i < p - 2) obtains columns i, i + p - 1, i + 2(p - 1),..., i + n - p + 1 of both A^ 

and Q(°) prior to performing the first Householder transform. Processor p-1, designated the check 

processor, computes two redundant strips of data 5(
4
0) and S^. The ith column of 5(

4
0) (5^0)) is 

obtained by summing columns i^ through (i + 1)^_ _ i 0f ^(°) (Q(°)). In matrix notation, we 

have 

sf   =   A^E 

^    =   QMS (4.8) 

where E is an nx ^- matrix with column i of £ having l's in rows i-^ through {i+l)-^-l and 0's 

elsewhere. Let us denote the matrix A^ augmented by appending the columns of 5(
4
0) to it by A'W, 

i.e., A'W = [A^\SA
0)]. Analogously, the augmented matrix Q'(°) is defined as Q'W = [Q(°)J5^0)]. 

The matrices A'W and Q'(°) are thus n x ^-. As before, the p processors are divided into check 

groups of 3 with each processor assigned to check the sum-of-squares of the succeeding processor 

in its check group. Also as earlier, we denote the members of the ith check group by g^, g[l), and 

g2
l ■ To enable processor gy to compute the sum-of-squares of the columns owned by processor 

5/+imod3> processor gy is communicated the columns owned by processor ^+lmod3 along with 

its own columns at the start of the algorithm. Processor gf computes the sum-of-squares of the 

columns owned by gf+lmodZ prior to performing the first Householder transform. Note that the 

redundant strips S\' and Sfr are treated no differently from the rest of the data; i.e., the sum-of- 

squares of SA and SQ are computed by the processor preceding processor p in its check group. Row 

checksums are also computed over all of the rows of the augmented matrices but are maintained 

on only one of the processors, say processor 0. Thus, if we denote the column sum-of-squares of 

A'(°) and Q'(°) by sosTA, and sos^, and the row checksums of the same matrices by cs^) and cs$, 

then the computation of the sum-of-squares is indicated by the equations 

(sosA,)T    =    (a:<V(a:i0,)0<i<^- 

('ostfj   =    (9?W>)0<i<-^ (4.9) 
p- 1 
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Figure 4.4 Data distribution for fault-tolerant QR factorization. 

and the computation of the row checksums is indicated by the equations 

4°; = A'^\ 

C8<$      =     Q >Wt (4.10) 

Here, a'} and q'\ denote the «th columns of ^'^ and Q'^°\ respectively; the subscript i for 

the sum-of-squares vectors denotes the ith element, while e denotes the all-l's column vector with 

^j- elements. An example data distribution for the fault-tolerant QR algorithm on a 6-processor 

system for a 10x10 matrix A is shown in Fig. 4.4. Once the initial row checksums and column 

sum-of-squares have been computed, the Householder transforms proceed in the normal manner 

except that the transforms are now applied to the augmented matrices and the row checksums. 

The sum-of-squares vectors are also updated in a manner discussed below, and we use the notation 
,(*hr .V°hT (sos_A, )i and (SOSQ,')

T
 to indicate the sum-of-squares vectors after k Householder transforms. If 

we denote the augmented matrices after k — 1 Householder transforms by A'(k~l) and Q'^k~l\ then 

the fcth Householder step in the fault-tolerant algorithm may be summarized by the equations 

[A >(k)\rM cs\ HW[A" (fc-i),   (fc-i) cs 

[Q '<*>'«#>] H^[Q" (*-i)ua(*-i) cs 
Q' 

(4.11) 
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This transformation has the effect of preserving the row checksums of the augmented matrices. Note 

that since orthogonal transforms preserve 2-norms, and thus sum-of-squares, the vectors sos1^, and 

sos^, continue to maintain the sum-of-squares of the matrices A'W and Q'^. However, note that 

the kth Householder transform only operates on rows k-l through n of the matrices A'(fc_1) and 

Q'(fc-i). in fact) gince tne elements below the diagonal in the first k - 1 columns of A'^'V have 

been zeroed out, the kth Householder transform only updates the lower-right n-k + 1 xn-k + 1 

submatrix of A'^k~x\ This, coupled with the 2-norm preserving property of orthogonal transforms, 

implies that the sum-of-squares of the transformed submatrices of A'(k~^ and Q'^-1) are preserved, 

which may be achieved by simply subtracting off the square of the elements in the k - 1th row of 

A^"1) and Q'^-1) from (sos^f and (sos^f; i.e., we have 

p-1 

{sos$)T   =   (so4-l))f-(q'tl^0<l<^-i (4.12) 

To update its local portion of the sum-of-squares vectors, each processor p needs elements of the 

k-lth rows of Mk~l^> and Q'^-1) which reside on the succeeding processor in its check group. Each 

processor thus has to communicate the elements it owns in the k- 1th rows of A'(fc-1) and <2'(fc_1) to 

the processor preceding it in its check group. Note that since elements a'^o through a'^~l^_l are 

O's, these need not be communicated. Once this transfer has been achieved, the transferred data is 

subjected to a row checksum check on processor 0. By the single-fault assumption, data corrupted 

by a single faulty processor may be detected as long as the faulty processor is not processor 0. 

If, instead, processor 0 is the faulty processor, the check could pass. However, in this case, only 

the elements communicated by processor 0 could be faulty. Since these are only used to update 

the sum-of-squares values on the processor responsible for checking processor O's columns, these 

could take on incorrect values. However, the next column sum-of-squares check would still correctly 

identify processor 0 as the faulty processor. 

If the row checksum check fails, then each processor subjects the columns owned by its succeed- 

ing processor to a sum-of-squares check. This check is over all of the elements of the column, so 

that the original sum-of-squares vectors sosA> and SOSQ> are used in the checks. The data corrupted 

by the faulty processor will lead to a failed check on the preceding processor, and the syndrome will 

correctly identify the faulty processor. Also note that prior to performing the fcth Householder up- 

date on its columns, each processor needs to compute the kth Householder vector v^ and the kth 

27 



Householder matrix H^. Recall that the elements in rows ft -1 through n -1 of the ft - 1th column 

of 4(*-i) are required to compute the ftth Householder vector v^. This column is broadcast to all 

processors by its owner to enable them to compute the Householder vector and the Householder 

matrix for the iteration using Eqs. (4.6) and (4.5) and then perform the Householder transform. 

However, due to the update of the sum-of-squares vectors after each Householder transform, the 

sum-of-squares of the broadcasted column (which is denoted by (sos^r1^)^^ is already available 

on a different processor. The owner of {sos[AI~ 
))^_1 broadcasts the value to all processors, which 

compare (a|t_1 ...n k-\)T(a'k^i...n k-\) witG (S0SA'~ )fc-i an<^ proceed with the transformation step 

only if the check passes on all processors. If the check fails on any processor, each processor performs 

a sum-of-squares check on the columns owned by its succeeding processor. If the faulty processor 

has corrupted any of the columns owned by it, the syndrome correctly identifies it. Once a faulty 

processor has been identified, it is easy to recover the corrupted data. If processor p - 1 is the 

faulty processor, computations may simply be continued on the remaining processors. If processor 

/ T^ p — 1 is the faulty processor, the remaining processors recover the corrupted columns of A^-1^ 

and Q(k~^ by using the equations 

AV°-VG = S^-V-A^-VF 

Q^G   =   S$-l)-Qlk-VF (4.13) 

where G is an n x -^ matrix with the ith column having a 1 in position jri + f and O's elsewhere, 

and F = E — G. The recovered data is then stored on processor p — 1, which then takes over the 

computations of processor / for the remainder of the algorithm. After n — 1 Householder steps. 

Q = Q(n~1} and R = ^(n_1) axe cyclically distributed on all processors. Note that if it is desired 

to be able to recover from further faults after recovery from the first fault, one of the surviving 

processors needs to be designated as the check processor for the remainder of the computation. A 

redundant strip.of data is computed and transformed as before on the check processor, while the 

remaining processors continue to perform the normal Householder transforms. 

4.1.3    Gaussian elimination 

A system of linear equations Ax = b, where A is a dense n x n matrix, b is a column vector 

with n elements, and a; is a column vector of n unknowns, is usually solved by applying Gau.ssian 

elimination to A and b, which results in the transformation of A into an upper triangular matrix I' 
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and b into a modified right-hand side r. The solution of the unknowns may be obtained by solving 

the new system Ux = r, which, because of the upper triangular nature of U, is considerably easier 

to solve by a process known as back substitution. A total of n -1 linear transformations are applied 

to A as part of the Gaussian elimination process. If we denote the matrix A and the right-hand 

side vector b after k - 1 transformation steps by A^k~1^ and b^k~l\ the kth transformation step 

may be represented as 

[AW\bW] = MkPk[A(k~V\b(k-V} (4.14) 

where Pk is a permutation matrix responsible for switching the kth. row of A^_1) with one of the 

rows between k and n, and Mk is defined as 

Mk = 

0 1 0 0 

0 
a(*-l> ak k-1 1 0 

ak-l k-1 

0   .. 
0C*-D 
"rc-l k-1 

„c*-u 0   ■ •  1 
'k-1 k-1 

(4.15) 

Mk is called a Gauss transformation, and has the effect of zeroing out elements below the diagonal 

of the k - 1th column of A^k~l\ Pk is chosen so that among rows k - 1 through n, the row whose 

k - 1th element is the largest in modulus is swapped with the k - 1th row. This process is known as 

partial pivoting, and is used to limit growth of roundoff errors. The code used to perform Gaussian 

elimination is shown in Fig. 4.5. Our fault-tolerant parallel implementation of Gaussian elimination 

based on the code of Fig. 4.5 used a row cyclic data distribution for A and b. As before, in a p 

processor system, the data was distributed over processors 0 through p - 2 while processor p - 1 

computed an extra strip of data by summing rows of A and b; i.e., while processor i (0 < i < p - 2) 

received rows i, i +p-l, i + 2(p-l),..., i + n-p+l of A and b, an ^ x (n + 1) matrix SA was 

computed and stored on processor p - 1 according to the following equation: 

SA = ET[A\b] (4.16) 
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/* b is stored in column n of A */ 

for(k=0;k<n-l;k++) 

{ 

/* Find pivot */ 

max = abs(A[k][k]);  pivot = k; 
for(i=k;i<n;i++) 

if(abs(A[i][k])>max) 
{ 

max = abs(A[i][k]);  pivot = i; 
} 

/* Check if singular */ 
if(max==0) 
/* Matrix is singular */ 

exit(); 

/* Swap pivot row with kth row */ 

for(j=k;j<n+l;j++) 

{ 
tmp = A[k] [j]; 
A[k][j]  = A[pivot][j]; 
A [pivot] [j]  = tmp; 

} 
/* Perform elimination */ 
for(i=k;i<n;i++) 

for(j=k;j<n+l;j++) 
A[i][j]  = A[i][j]   - A[i][k]   * A[k][j]  / A[k][k]; 

> 

Figure 4.5 Gaussian elimination program. 
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where E is the matrix introduced in Subsection 4.1.2.   We define the augmented matrix A! as 

follows: 
r A\b 

A' = (4.17) 
SA 

As before, processors were grouped into check groups of three with each processor computing check- 

sums over the rows of A' owned by the processor succeeding it in its check group. To accomplish 

this step, processor g%' (which, as before, denotes the kth processor in the z'th check group), had 

to be communicated its own rows as well as its successor's rows at the start of the computation. 

This step may be represented as 

rcsA,=Äe (4.18) 

Here, e denotes the all-l's column vector with n + 1 elements; res.4' is thus an -^ column vector. 

A column checksum is also computed over the matrix A' as follows: 

ccsLT
AI=fTÄ (4.19) 

where fT denotes the all-l's row vector with ^y elements and ccsLT
A, is a row vector with n + 1 

elements. The row vector ccsL\, is computed and stored on one of the processors, say processor 

0. For reasons that we explain below, another row vector with n + 1 elements called ccsU^, is also 

maintained on processor 0, which is initialized to all zeroes. We also need to maintain a -^ x (n +1) 

matrix SUA on processor p - 1, which is also initialized to all zeroes. The data distribution for a 

system of 10 linear equations on a 6-processor system is shown in Fig. 4.6. Once row and column 

checksums have been computed, Gauss transforms may be applied to A' and the row checksums 

in the usual manner, with one caveat. The rows of SA are not included in the pivoting process to 

prevent an inadvertent introduction of linear dependence into the system. The fcth transformation 

step may be represented as 

[A'Wlrcs™] = MkPk[A!{-k-%cs^rl)] (4.20) 

where, as before, the superscript (k) denotes that k transforms have taken place. Elements k - I 

through n - 1 of row [^J of SUA are also updated by adding the corresponding elements of the 
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Figure 4.6 Data distribution for fault-tolerant Gaussian elimination 

pivot row to it; i.e., processor p — 1 carries out updates according to the following equation: 

(5C/?))^,_1...ra_1 = (5^-1)),-1 
p-i p-i -l...n-l+Pr (*-l) 

P-I Jfc-l...n-l 
(4.21) 

where pAk~l^> denotes the pivot row for the k — 1th iteration. It may be verified that SUA + SA 

equals the sum of the row strips of A after each iteration. The pivoting needs to be performed 

carefully to prevent a faulty processor from suggesting a poor pivot. Each processor thus chooses its 

local pivot row and communicates it not only to the owner of the k — 1th row, say owner, but also 

to the predecessor of owner in its check group, say predowner. The predecessors of each processor 

also communicate the row checksums of the local pivot rows of their successors to both owner and 

predowner- The integrity of the local pivots is checked on both owner and predowner by comparing 

with their row checksums, and then the global pivot row is computed from the local pivot rows on 

both processors and communicated to all processors. The identity of the owner of the global pivot, 

say gpowner, is also computed on both processors. The two copies of the chosen pivot row may be 

compared on each processor for equality. Processor gpowner as well as the predecessor of gpowner, 

say predgpowner, then receive the k — 1th row from owner and the row checksum of the k — 1th 

row from predowner. If the row checksum check for the k — 1th row passes on both processors, the 

row checksum for the pivot row is replaced by the row checksum for the k — 1th row on processor 

predgpowneT, while the pivot row is replaced by the A: — 1th row on processor gpowner. If at any stage 
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of the pivot computation a check fails on any processor, normal computations are halted, and each 

processor uses its row checksums to check the data on its succeeding processor. Note that if the 

pivot and k - 1th rows were covered by different rows in 5,4, appropriate additions and subtractions 

need to be made to the relevant rows in SA as well as the checksums of the corresponding rows, and 

thus both copies of the A; - 1th row need to be sent to processor p-1 and the processor maintaining 

the row checksums of SA as well. For example, suppose the zth row is chosen to be the pivot row 

and exchanged with the k - 1th row. Then, the ith row needs to be subtracted off row I -^-1 and 

added to row [^fjj of SA while the k - 1th row needs to be added to row L^yj and subtracted off 
row L^=TJ 

of S-±- The corresponding adjustments need to be made to the row checksums as well. 

If all checks during the pivot determination process and the comparison check of the two copies 

of the broadcasted pivot pass on each processor, each processor uses Eq. (4.20) to update its local 

rows of A'^~^ and rcs§~1]. The column checksums ccsL^ and ccsU^,~l) are also modified as 

follows: 

(CCSU^)UM     =     (^ri))Ll...n+1+^7l)-,..,+ 1 

(ccsL^f   =   (ccsL^l))J-^^{ccsL^l)fkk-l<l<n (4.22) 
ak-lk-l 

As a result of the update in Eq. (4.22), the sum of (ccsUff)? and (ccsL^))? equals the sum of 

the elements in the «th column of A'(k\ Note that in order to update the row checksum for the 

z'th row, element a'}kZ{' is required by the processor responsible for checking the owner of the ith 

row. Element aikli is present on the succeeding processor. Thus elements afc_i...n_i k-i need to 

be communicated to preceding processors by their owners to enable them to perform row checksum 

updates as described by Eq. (4.20). After these elements are received, these elements are commu- 

nicated to processor 0, which compares the values of (ccsL^_1))^_1 with e£_x n_lak-i...n-i *-i- 

The results of these checks are communicated to all other processors, which perform the next step 

of the update using Eq. (4.20) only if the check passes. If a processor other than processor II h;i> 

communicated incorrect data values for the row checksum update, this will likely be detected bv 

the check on processor 0 due to the single-fault assumption. If processor 0 is faulty and has commu- 

nicated incorrect data values, the check might still pass. However, by the single-fault assumption, 

the data values communicated by all other processors are error-free. Thus only processor O's row 

checksums, which are updated on its check processor, may be updated incorrectly. However, this 

incorrect update would still lead to processor 0 being identified as the single faulty processor the 
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next time a row checksum check was applied. If either check fails, the normal execution of the 

algorithm is halted and each processor proceeds to check the rows of its succeeding processor by 

performing a row checksum check. If a single processor is faulty and has corrupted its data, the 

syndrome may be used to identify the faulty processor /. Subsequently, if / ^ p — 1 (i.e., the faulty 

processor is not the check processor), the check strips S), ~    and SUA       may be used to recover 

the corrupted data by using 

GTS<f-l) = S{*~1) + SU%~1) - i^4(fc-D (4.23) 

where G and F are as defined in Subsection 4.1.2. The check processor then takes over the compu- 

tations of the faulty processor for the remainder of the algorithm. If the check processor was the 

faulty processor in the first place, the remaining processors execute the algorithm to completion af- 

ter location of the faulty processor. As in the previous two algorithms, if recovery from subsequent 

failures is desired, then one of the surviving processors needs to be designated as a check processor 

and the recovered data needs to be redistributed on the rest of the surviving processors. A new 

redundant strip is computed by the check processor, and the algorithm proceeds as before. 

4.2    Experimental Results 

As noted earlier, ABFT schemes are attractive since they can be implemented on general- 

purpose multiprocessors without requiring extra hardware or system software modifications. In 

this section we present performance overheads for the matrix multiplication, QR factorization, 

and Gaussian elimination algorithms with single-fault recovery discussed in Section 4.1. We also 

present results for the QR algorithm with double-fault recovery to indicate that the overhead for 

the multiple-fault case is not prohibitive and tends to a small constant overhead. Furthermore, 

we present results on single-fault locating (but not correcting) versions of the same applications, 

which may be achieved by doing away with the check strip and the check processor and instead, 

using all of the processors for computations on the original data. For the QR algorithm, we also 

present results for the double-fault locating case. The testbeds used were a 16-processor Intel 

iPSC/2 hypercube and a 15-processor Intel Paragon (both distributed-memory message-passing 

multicomputers). Our encodings guarantee that single faults can be located or recovered from 

(depending on which algorithm is being run) in the event that the faults are detected in the first 

place. Non-detection of faults can occur if they lead to compensating errors, or if the magnitude 
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of the data corruption due to the fault is so small that the deviation from the nonfaulty results is 

not greater than the tolerance. 

4.2.1     Timing Overheads 

Figures 4.7, 4.8 and 4.9 show the timing overheads for the algorithms for single-fault location and 

correction over the basic algorithms on various matrix dimensions. The experiments were performed 

on a 16-processor Intel iPSC/2. The overhead for the algorithms for single-fault correction is shown 

for two cases: the case when no fault occurred, when only a diagnosis of the system state had to 

be performed, and the case when a single fault was actually injected, when, following the diagnosis 

of the faulty processor, the corrupted data had to be recovered by using the good data and the 

check strip. The overhead for the single-fault location algorithm becomes very low for large matrix 

sizes. Overheads for the single-fault location algorithms asymptotically go to zero with increased 

matrix size. Overheads for the single-fault correction algorithm are somewhat higher but are also 

very modest for moderately large matrix sizes. For each of the algorithms, it can be shown that 

the overheads asymptotically tend to ^ for a p-processor system. Since we used a 16-processor 

system, the overhead for the single-fault correction algorithm can be expected to approach 7% 

for large matrix sizes. We observe from the figures that even for the modest matrix sizes on 

which we obtained timing results, the overhead for the single-fault correction algorithm is only 

around 10-15%. Another point to note is that there is very little extra overhead for the recovery 

phase, especially for large matrix sizes. This result is not surprising since the fractional overhead 

contributed by the recovery phase decreases linearly with n, the matrix dimension. 

In Fig. 4.10, we indicate the timing overhead for the QR factorization algorithm with double- 

fault location and recovery. The experiments were performed on a 15-processor Intel Paragon. In 

the double-fault location case, as for single-fault location, the extra computation introduced is still 

0(n2) compared to 0(n3) for the original algorithm. Thus the overhead can be expected to become 

negligible for large matrix sizes. For the double-fault recovery case, the asymptotic overhead can 

be expected to approach -^f-, where t is the number of processors operating on redundant data, 

and p is the total number of processors. We used 15 processors, two of which were used to compute 

on redundant data (this is sufficient for recovering from any pattern of two faults), and thus the 

asymptotic overhead could be expected to approach approximately 15%. We observe that for 

matrices of size 500x500, the overhead is already close to 15%. Although the recovery phase, as 

in the single-fault case, adds only 0(n2) operations and can be expected to contribute a negligible 
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Figure 4.7 Timing overhead for matrix multiplication for the single-fault case. 
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Figure 4.9 Timing overhead for Gaussian elimination for the single-fault case. 

overhead for large enough problem sizes, for the problem sizes in our experiments, the recovery 

phase still represented a significant overhead whenever faults occurred during the run. However, 

the overhead is around 35% for two-fault recovery for the largest problem sizes we considered. Note 

that if the number of processors in the system were greater, the overheads for each case would drop 

further. 

4.2.2    Fault coverage 

To determine fault-coverage results, we injected transient and permanent bit- and word-level 

faults in floating-point computations and computed the percentage of times these were detected. 

We determined the threshold to be used by the simplified error analysis method suggested in [38]. 

Since most of the undetected faults were not detected due to their very marginal effects on the data 

(such as affecting the least significant 5 bits in a 23-bit mantissa), we determined new coverage 

results for faults causing errors that we classified as significant errors, which may be loosely defined 

as errors whose magnitude was more than 10 times the roundoff error which would normally occur 

on a fault-free system. For details of the definitions and exact methodology of determining error 

coverage we refer the reader to [38]. 

The fault-coverage results are summarized in Tables 4.1, 4.2, and 4.3. The coverages for location 

and recovery are reported for only those cases when the injected faults were detected. Note that 

in some cases, the error location coverage is less than 100%. An incorrect diagnosis can occur due 
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Table 4.1 Single-fault coverage for matrix multiplication. 

Fault 
Types 

Error Detection 
Coverage 

Significant Error 
Coverage 

Fault Location 
Coverage 

Fault Recovery 
Coverage 

Transient Bit-level 73 94 100 100 
Transient Word-level 100 100 100 100 
Permanent Bit-level 78 95 100 100 
Permanent Word-level 100 100 100 100 

to a transient fault corrupting a checksum, rather than any of the original data elements, so that 

the faulty processor flags an error, but its check processor does not, since all of the data elements 

communicated to it by the faulty processor are error-free. In these cases, we may incorrectly Han 

as faulty the processor being checked by the faulty processor, but since the data computed !>>• 

the faulty processor is error-free, the recovery phase goes through correctly, and we may restart 

the computation from the point of failure. Error coverage results for the fault-recovery algorithm> 

are always 100% since our algorithms for reconstructing the data yield correct results if the data 

involved in the reconstruction is fault-free. 
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Table 4.2 Single-fault coverage for QR factorization. 

Fault 
Types 

Error Detection 
Coverage 

Significant Error 
Coverage 

Fault Location 
Coverage 

Fault Recovery 
Coverage 

Transient Bit-level 70 90 100 100 
Transient Word-level 100 100 100 100 
Permanent Bit-level 74 86 100 100 
Permanent Word-level 100 100 100 100 

Table 4.3 Single-fault coverage for Gaussian elimination. 

Fault 
Types 

Error Detection 
Coverage 

Significant Error 
Coverage 

Fault Location 
Coverage 

Fault Recovery 
Coverage 

Transient Bit-level 86 100 98 100 
Transient Word-level 100 100 98 100 
Permanent Bit-level 93 99 100 100 
Permanent Word-level 100 100 100 100 

4.3    Summary 

In this chapter, we have described the modification of three parallel numerical algorithms to' 

make them error locating and correcting. The redesign employs the basic error location and recovery 

framework described in the previous chapter. The checks themselves are algorithm-specific and 

impose very low overheads while also providing high error coverage, as demonstrated by our results. 
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CHAPTER 5 

COMPILER-ASSISTED GENERATION OF 

ERROR-DETECTING PARALLEL PROGRAMS 

We have developed an automated, compile-time approach to generating error-detecting parallel 

programs. The compiler is used to identify statements implementing affine transformations within 

the program and automatically insert code for computing, manipulating, and comparing checksums 

in order to check the correctness of the code implementing affine transformations. Statements that 

do not implement affine transformations are checked by duplication. Checksums are reused from one 

loop to the next if this is possible, rather than recomputing checksums for every statement. A global 

dataflow analysis is performed to determine points at which checksums need to be recomputed. We 

also use a novel method of specifying the data distributions of the check data using directives 

provided by the High Performance Fortran (HPF) [10] standard so that the computations on the 

original data and the corresponding check computations are performed on different processors. 

5.1     A Motivational Example 

We will use the code fragment in Fig. 5.1 to illustrate the development of an error-detecting 

parallel program. The code fragment solves a system of equations using the Jacobi iterative tech- 

nique. This and other similar code fragments occur in numerical routines designed to solve partial 

differential equations used in modeling physical phenomena. Our eventual output is designed to be 

an error-detecting parallel program computing the same results as the serial program. The serial 

program is augmented with HPF data distribution directives to aid in the generation of the parallel 

program; this information is also used in generating the error-detecting version. Note that in the 

absence of the data distribution annotations, our compiler would be able to generate a serial version 

of the program useful for detecting transient errors. 

Before the actual generation of the checksum-based checks is performed, a version of the original 

program is created by duplicating all array assignments in the program. For the Jacobi example, 

this duplication results in the code fragment shown in Fig. 5.2. 

The next step in the process is to determine duplicate assignment statements in the code that 

implement affine transformations.   These can be identified by examining the syntactic structure 
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PROGRAM jacobi 

INTEGER p(4,4) 

REAL a(1000,1000) 

REAL b(1000,1000) 

INTEGER k, j, i 

!HPF$ PROCESSORS :: p(4,4) 

!HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO p :: a, b 

DO k = 1,100 

DO j = 2,999 

DO i = 2,999 

a(i,j) = (b(i - l,j) + b(i + l,j) + b(i,j - 1) + b(i,j + 1) 
1     ) / 4 

END DO 

END DO 

DO j = 2,999 

DO i = 2,999 

b(i,j) = a(i,j) 

END DO 

END DO 

END DO 

END 

Figure 5.1 Code fragment implementing Jacobi's iterative technique. 
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DO k = 1,100 
DO j = 2,999 

DO i = 2,999 
$a(i,j) = ($b(i - l,j) + $b(i + l,j) + $b(i,j - 1) + $b(i,j + 1) 

1     ) / 4 
a(i,j) = (b(i - l,j) + b(i + l,j) + b(i,j - 1) + b(i,j + 1) 

1     ) / 4 
END DO 

END DO 
DO j = 2,999 

DO i = 2,999 
$b(i,j) = $a(i,j) 
b(i,j) = a(i,j) 

END DO 
END DO 

END DO 
END 

Figure 5.2 Jacobi kernel with duplicate array assignments. 

of the statement and by verifying that the dependences in which the statement is involved satisfy 

some additional conditions. Both the assignment statements that were newly introduced into the 

example Jacobi program satisfy the criteria for being affine transformations. These statements are 

then replaced by statements that transform checksums on array elements rather than transforming 

the array elements themselves. The exact methodology for determining when to introduce and 

transform checksums is explained later and forms the bulk of this chapter. One of the array 

dimensions is chosen to compute the checksums over (the dimension subscripted by j for our 

example), and the loop traversing this dimension in the original code is deleted. The code after 

introducing checksum transformations is shown in Fig. 5.3. 

Information about, available checksums is then propagated across statements in the program. 

This information is used to recompute checksums at points where checksum values are required 

but are not available. For the code shown in Fig. 5.3, the second checksum statement requires 

the values of $cs2_a(i) for 2 < i < 999, but information propagation across statements is able 

to determine that these values are already available when the second assignment statement is 

encountered. However, checksums $cs2_a and $cs2_b need to be computed prior to the start of the 

k loop since these are required within the loop body. Checks are generated at intermediate points 

in the program only where necessary (this will be elaborated on in Section 5.3) and also at the end 
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DO k = 1,100 
DO i = 2,999 

$cs2_a(i)  =  ($cs2_b(i - 1)  + $cs2_b(i + 1)  + ($cs2_b(i)  - b(i 
1 ,999)  + b(i,D) + ($cs2_b(i) + b(i,1000) - b(i,2)))  / 4 

END DO 
DO j  = 2,999 

DO i = 2,999 
a(i,j) = (b(i - l,j) + b(i + l,j) + b(i,j - 1)  + b(i,j + 1) 

1 )  / 4 
END DO 

END DO 
DO i = 2,999 

$cs2_b(i) = $cs2_a(i) 
END DO 
DO j  = 2,999 

DO i = 2,999 
b(i,j)  = a(i,j) 

END DO 
END DO 

END DO 
END 

Figure 5.3 Jacobi kernel after introduction of checksum statements. 
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of the program.  The program after information propagation and checksum and check generation 

have been performed is shown in Fig. 5.4. 

We assume that the program being transformed has been annotated with data distribution 

information (i.e., information about how arrays in the program are to be distributed over a specified 

processor topology) to aid in parallelization. The data distribution information about the original 

arrays is used to choose a suitable data distribution for the extra data that was introduced in the 

form of checksums and possibly some extra arrays. This step may necessitate introducing an extra 

dimension for a checksum variable so that each new checksum now covers a smaller portion of the 

array than the old checksum, which may also require the checksum transformation statements to 

be modified accordingly. Data distribution information is then specified for checksums and any 

extra arrays that may have been introduced so that computations on the original data and the 

corresponding check data are performed on different processors. The code after data distribution 

information has been introduced for checksums is shown in Fig. 5.5. 

Finally, a parallelizing compiler for a distributed-memory machine (in our case, Paradigm [40, 

41, 42]) is used to generate an error-detecting parallel program based on the code incorporating 

checks and data distribution information. 

We would like to point out at this point that the parallel version of the code in Fig. 5.1 would 

require 0(kn2) computations in all, where n is the matrix size and k is the number of iterations' 

executed, while the parallel version of the code in Fig. 5.5 would perform 0{n2jrkn) extra operations 

due to the checksum computation, updates, and comparison. Thus the overhead due to the check 

operations can be expected to be small for large problem sizes. By contrast, a straighforward 

duplication and check approach, such as one based on the code of Fig. 5.2, would require more than 

double the number of operations as the original program. The approach discussed in [29] would 

also be able to check the bodies of the two loops of the Jacobi code by checksum manipulations 

since these happen to be performing linear transformations. However, since information about 

available checksums is not computed across statements, checksums would be regenerated prior to 

each loop nest enclosing a checksum manipulation statement for all checksums required by the 

statement. Following the execution of the checksum code and the original loop being checked by it, 

a checksum-based check, which is illustrated in Fig. 5.6, would be generated for the array elements 

being assigned by the loop being checked. Note that recomputing the checksums and generating 

the checks for each loop incurs 0{n2) overhead for each iteration of the k loop. By contrast, our 

approach, which performs dataflow analysis to determine that $cs2_b is available upon each entry 
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DO $il = 2,999 DO i = 2,999 

DO $12 = 2,999 $cs2_b(i) = $cs2_a(i) 

$a($il,$i2) = a($il,$i2) END DO 

END DO DO j = 2,999 

END DO DO i = 2,999 

DO $il = 2,999 b(i,j) = a(i,j) 

DO $i2 = 1,1000 END DO 

$b($il,$i2) = b($il,$i2) END DO 
END DO END DO 

END DO DO $il = 2,999 
DO $il = 2,999 $T($il) = 0 

$cs2_a($il) = 0 END DO 

END DO DO $il = 2,999 
DO $il = 2,999 DO $i2 = 2,999 

DO $12 = 2,999 $T($il) = $T($il) + a($il,$12) 
$cs2_a($il) = $cs2_a($il) + a($il,$i2) END DO 

END DO END DO 

END DO DO $il = 2,999 

DO $11 = 2,999 IF (compare($T($il),$cs2_a($il)) .EQ. 1) 
$cs2_b($il) = 0 1CALL error_handler() 

END DO END DO 

DO $il = 2,999 DO $il = 2,999 

DO $i2 = 2,999 $T_0($il) = 0 
$cs2_b($il) = $cs2_b($il) + b($il,$i2)   END DO 

END DO DO $il = 2,999 

END DO DO $i2 = 2,999 

DO k = 1,100 $T_0($il) = $T_0($il) + b($il,$12) 
DO i = 2,999 END DO 

$cs2_a(i) = ($cs2_b(i - 1) + $cs2_b(i + l£ND DO 

1+ ($cs2_b(i) - b(i,999) + b(i,l)) + ($cs2_b(i) DO $il = 2,999 

2+ b(i,1000) - b(i,2))) / 4 IF (compare($T_0($ll),$cs2_b($il)) .EQ. 1) 

END DO 1CALL errorJiandlerO 
DO j = 2,999 END DO 

DO i = 2,999 END 

a(i,j) = (b(i - l,j) + b(i + l,j) + 

lb(i,j - 1) + b(i,j + 1)) / 4 

END DO 

END DO 

Figure 5.4 Jacobi code with checks. 
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PROGRAH jacobi 

DOUBLE PRECISION »T_0(1000,4) 

DOUBLE PRECISION »TU000.4) 

INTEGER Sp 

INTEGER «i2 

INTEGER Jil 

DOUBLE PRECISION Scs2_a(1000,4) 

DOUBLE PRECISION »Cs2_b(1000,4) 

DOUBLE PRECISION »a(1000.1000) 

DOUBLE PRECISION SbÜOOO.lOOO) 

REAL a(lOOO.lOOO) 

REAL b(lOOO.lOOO) 

INTEGER k, j, i 

IHPFS PROCESSORS :: p(4.4) 

!HPF» DISTRIBUTE (BLOCK, BLOCK) ONTO p :: a, b 

!HPF* TEMPLATE. DISTRIBUTE (BLOCK. BLOCK) ONTO p :: t.mplatatOÜOOO, 1000) 

!HPFJ ALIGN (npf»O.hpfjl) WITH t.mplat.»0(b.pf»0 ♦ 250,hpf*l> WRAP :: Ja 

!HPF» TEMPLATE. DISTRIBUTE (BLOCK, BLOCK) ONTO p :: t.mplat.*l(1000, 1000) 

!HPF» ALIGN (hpf»0,hpf»l) MITE t.mplat.»l(hpf»0 + 250,hp«t) WRAP :: $b 

!HPF» TEMPLATE, DISTRIBUTE(BLOCK,BLOCK) ONTO p : :  TEMPLATEJ2Ü000.4) 

!HPFt ALIGN Sci2_a(hpf»0,hpf»1) WITH TEMPLATE*2(hpf»0+250,hpttl+1) WRAP 

!HPF» TEMPLATE, DISTRIBUTE(BLOCK,BLOCK) ONTO p :: TEMPLATEt3(1000,4) 

!HPF* ALIGN tcs2_b(hpl»0,hpm) WITH TEMPLATE»3(hpf»0*250,hpftl+1) WRAP 

DO »ii - 2,999 

DO »i2 - 2,999 

»a(»il,»i2) - a(»il,»i2) 

END DO 

END DO 

DO »il - 2,999 

DO »12 - 1,1000 

»b(»il,»i2) -  b(»il,»i2) 
END DO 

END DO 

DO »il '  2.999 
DO »p » 1,4 

»cs2.a(»il,«p) - 0 

END DO 

END DO 

DO »il • 2,999 

DO Si2 - 2,250 

»c»2_a(»il,l) - *cs2.a(»il,l) + a(»il,»i2) 

END DO 

END DO 

DO »il ■ 2,999 
DO »12 » 1,250 

DO »p '  2,3 

Scs2_a(»il,»p) - »cs2_a(»il,*p) + a(»il,(»p - 1) • 250 ♦ *i 
1      2) 

END DO 

END. DO 

END DO 

DO til ■ 2,999 
DO »12 - 751,999 

»ca2_a(»il,4) - »c«2.a(*il,4) ♦ a(»il,»i2) 
END DO 

END DO 

DO »il " 2,999 

DO »p • 1,4 

tc»2_b(»il,»p) - 0 

END DO 

END DO 

DO »il - 2,999 

DO Ji2 - 2,250 

»c»2.b(»il,D - »ca2_b(»il,l) ♦ b(»il,»i2) 
END DO 

END DO 

DO »il ■ 2,999 
DO ti2 > 1,250 

00 *p » 2.3 

»c.2J>(»il,«p) - »c»2.b(*il,*p) ♦ b(»il,(»p - 1) • 250 + »1 

1      2) 

END DO 

END DO 

END DO 

DO til • 2,999 

DO »i2 - 751,999 

»ca2_b(»il,4) - tca2.b(»il,4) + b(»il.*12) 

END DO 

END DO 

DO k - 1,100 

DO i • 2,999 

»cs2_a(i.l) » (»c«2_b(l - 1,1) + »c«2_b(i ♦ 1,1) + *c«2_b(i,I 

1 ) ♦ (b(i,2 - 1) - b(i,250)) ♦ *ci2_b(i,l) + (b(i,250 + 1) - b 

2 (i,2))) / 4 

DO »p - 2,3 

<cs2_a(i,»p) - (*ci2.b(i - l,»p) + »ca2.b(i *  l,*p) ♦ »cs2. 
1 b(i,»p) + (b(i,250 ■ (»p - 1)) - b(i,250 < (»p - 1) * 250)) 

2 + «ca2.b(i,Jp) » (b(i,250 « (»p - 1) ♦ 251) - b(i,2S0 » (» 

3 p - 1) ♦ 1))) / 4 

END DO 

»cs2.a(i,4) - (»cs2_b(i - 1,4) + »c«2.b(i <■ 1,4) * «c«2.b(i,4 

1 ) + (b(i,751 - 1) - b(i,999)) ♦ »ci2.b(i,4) ♦ (b(i,999 + 1) - 

2 b(i,751))) / 4 

END DO 

DO j " 2,999 

DO i » 2,999 

a(i,j) - (b(i - l,j) ♦ b(i * l,j) ♦ b(i,j - 1) ♦ b(i,j * 1) 

1      ) / 4 

END DO 

END DO 

DO i • 2,999 

*cs2_b(i,l) • »cs2.a(i,D 

DO »p - 2,3 

»cs2_b(i,»p) - »ci2_a(i,»p) 

END DO 

*ca2.b(i,4) • *ca2.a(i,4) 

END DO 

DO j ■ 2,999 
DO i - 2,999 

b(i,j) > a(i,j) 

END DO 

END DO 

END DO 

DO »11 » 2,999 

DO »12 • 2,250 

«T(»il,D - ST(»il,l) + a(»il,»i2) 

END DO 

END DO 

DO »il - 2,999 

00 »12 ■ 1,250 
DO *p - 2,3 

*T(*il,*p) - »T(»il,*p) + a(*il,(*p - 1) • 250 ♦ Ji2) 
END DO 

END DO 

END DO 

DO til > 2,999 

DO »i2 - 751,999 

»T(»il,4) ■ «T(»il,4) + a(*il,»i2) 

END DO 

END DO 

DO »il =■ 2,999 
DO »p • 1,4 

IF (compar«(»T(»il,tp).»ci2_a(»il,»p)) .EQ. 1) CALL «rror.han 

1    dl.rO 

END DO 

END DO 

DO »il - 2,999 

DO »p • 1,4 

»T.O(»il,*p) - 0 

END DO 

END DO 

DO til - 2,999 

DO »12 • 2,250 

«T.OCm.D - »T_0(»il,U + b(*il,»i2) 
END DO 

END DO 

DO »il - 2,999 

DO »12 • 1,250 

DO Sp - 2,3 

»T_0(»il,»p> - tT.O(til.tp) + b(*it,(»p - 1) - 250 • ti2) 

END DO 

END DO 

END DO 

DO »il « 2,999 

DO Ü2 " 751,999 

»T.0(»il,4) - *T.0(»il,4) » b(»il,»i2) 

END DO 

END DO 

DO til • 2,999 

DO tp ■ 1,4 
IF (comp«ra(«.0(lil,tp),»ci2.b(»il,*p)) .EQ. 1) CALL .rror.h 

1    andlarO 

END DO 

END DO 

END 

Figure 5.5 Jacobi code incorporating checks and data distribution specifications. 
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DO k = 1,100 C Recompute checksums of a 
C Recompute checksums of b DO  i = 2,999 

DO  i = 2,999 $cs2_a(i)  = 0 
$cs2_b(i)  =0 DO j  = 2,999 
D0 J  = 2,999 $cs2_a(i)  = $cs2_a(i)  + a(i,j) 

$cs2_b(i)  = $cs2_b(i) + b(i,j)                            ENDDO 
ENDDO ENDDO 

ENDDO DO  i = 2,999 
DO i = 2,999 $cs2_b(i) = $cs2_a(i) 

$cs2_a(i) =  ($cs2_b(i - 1)  +                              END DO 
l$cs2_b(i + 1)  +  ($cs2_b(i) - b(i,999)                       DO j = 2,999 
2+ b(i,l))  +  ($cs2_b(i) + b(i,1000) - DO i = 2,999 
3b(i,2)))  / 4 b(i.j) = a(i,j) 

END DO END DO 
DO j  = 2,999 END DO 

DO i = 2,999 C Check array b using $cs2_b 
a(i,j)  = (b(i - l,j)  + b(i + l,j)  + DO i = 2,999 

lb(i,j - 1)  + b(i,j + 1))  / 4 T = 0 
END DO DO j  = 2,999 

END DO T = T + b(i,   j) 
C Check array a using $cs2_a ENDDO 

DO  i = 2,999 IF  (compare(T,$cs2_b(i))   .Eq.   1)  CALL 
T = 0 1error.handler() 
DO j   = 2,999 ENDDO 

T = T + a(i,  j) END DO 
ENDDO END 
IF  (compared,$cs2_a(i)) .Eq.   1)  CALL 

lerror.handlerO 
ENDDO 

Figure 5.6 Transformed Jacobi kernel with regeneration of checksums before each loop. 

into the k loop and that $cs2_a is available prior to the second manipulation statement, does 

not need to regenerate checksums and perform checks for each loop. Thus only 0(ri) overhead is 

incurred for checksum manipulation for each iteration of the k loop. 

5.2    System Overview 

In this section we give an overview of the modules comprising our system. The input set ac- 

cepted by our compiler consists of Fortran programs with HPF data distribution annotations [10]. 

Parafrase-2 [43, 44], a parallelizing compiler for shared-memory machines developed at the Univer- 

sity of Illinois, is used as a front-end module to parse in the input program, build an abstract syntax 

tree representation of the program, perform dependence analysis, and build the flowgraph. The 

original compiler was not able to utilize information provided by HPF data distribution information 

and has been modified to do so [41, 45]. Apart from being a state-of-the-art optimizing and paral- 
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lelizing compiler, Parafrase-2 has also been designed as a developmental tool. The compiler may be 

easily augmented by the addition of passes to use and modify the information stored in its internal 

data structures. Several passes have been added to achieve our goal of generating error-detecting 

versions of programs. The first pass is responsible for generating duplicate statements correspond- 

ing to the statements in the program that operate on arrays. These statements perform the same 

transformations as the original statements, but on different arrays, which we refer to as shadow ar- 

rays. The second pass then attempts to replace duplicate statements by statements that transform 

checksum variables computed by summing over one of the array dimensions wherever possible. The 

third pass performs information propagation and check code insertion. Information about available 

checksums and shadow arrays is propagated across statements in the program. If it is determined 

that a checksum is needed but not available at a point in the program, it is regenerated.  Along 

with regenerating the checksum, checks are generated comparing the elements being summed with 

the shadow elements, if the latter are available at that point.  Similarly, at points where shadow 

elements are required but are not available, they are copied over from the corresponding original 

array values. If checksums covering these array values are available, a check is also generated to 

check the elements being copied over. The fourth pass is responsible for taking data distribution 

information into consideration and specifying suitable data distributions for the check data that 

was introduced. This step may also involve expansion of certain dimensions of the checksum vari- 

ables that were introduced and consequent modification of some of the statements transforming 

the checksums.  Data distribution information is used to specify distributions for checksums and 

shadow arrays in such a manner that an original array element and the corresponding shadow array 

element or checksum variable that checks it reside on different processors. The modified program 

is input to Paradigm [40], a distributed-memory parallelizer developed at the University of Illinois. 

which can generate message-passing code for a variety of target multicomputers. The final output is 

an error-detecting parallel program for distributed-memory multicomputers. The various modules 

in our system and their interactions are illustrated in Fig. 5.7. 

5.3    Algorithms for Check Code Generation 

5.3.1    Statement duplication 

The pass for duplicating statements that operate on arrays is fairly straightforward. Howrwr. 

not only does the pass create duplicate assignment statements for those which assign to or us<- 
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PARAFRASE-2 
Program analysis, 
optimization, and 

transformation 

Cheöc code generator 

PARADIGM 

Message passing code 

generator and optimizer 

Message-passing 

FORTRAN program 

with error-detection 

capability 

Figure 5.7 Overall organization of system for generating error-detecting parallel code. 
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arrays directly, but also it duplicates statements that use array elements indirectly. For example, a 

statement that used a scalar to which was assigned an array value prior to reaching the statement 

would also be duplicated. Also, if loop expressions or IF conditionals depend directly or indirectly 

on array values, then the entire loop or IF statement, including its body, is duplicated. By 

duplication of a statement, we mean that a second statement is created performing the same 

transformations as the original statement, but with array elements and array-dependent variables 

replaced by different elements that we refer to as shadows. To perform statement duplication 

according to the rules described, it is necessary to determine which scalar variables use array values 

in their definition. This problem can be solved as a standard reaching definitions problem [46]. An 

example output of this pass is shown in Fig. 5.2 for the code in Fig. 5.1. 

5.3.2     Checksum introduction 

Once statement duplication has been performed, the pass for determining affine transformations 

and replacing array elements by checksums is run. However, prior to this, a loop distribution pass 

is run to separate out duplicate statements operating on shadow elements and the corresponding 

original elements into separate loops. The loop distribution pass also has the effect of separating 

out different duplicate statements into different loops, which increases opportunities for checksum 

introduction, as we explain later in this section. Loop distribution on the code in Fig. 5.2 yields 

the code shown in Fig. 5.8. 

Given an array A(l : u) which is transformed by a function / satisfying the following property 

E/(A(o) = /d>W) (5,1) 
i=l i=l 

we say that the array A(l : u) undergoes a linear transformation. Suppose we have another function 

g where g(x) = f(x) + c, where c is a constant, then clearly we have 

i£g(A{i))=g(jr Aft) + {I-u)c (5-2) 
i=l i=l 

In this case, we say that the array A{1 : u) undergoes an affine transformation. For example, the 

code in Fig. 5.11 performs an affine transformation, while the transformation performed by the code 

in Fig. 5.9 is not affine. Our approach to generating checksum-based checks is based on identifying 

duplicated assignment statements that perform a linear or affine transformation on some shadow 
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DO k = 1,100 
DO j = 2,999 

DO i = 2,999 
$a(i,j) = ($b(i - l,j) + $b(i + l,j) + $b(i,j - 1) + $b(i,j 
+ D) / 4 

END DO 
END DO 
DO j = 2,999 

DO i = 2,999 
$b(i,j) = $a(i,j) 

END DO 
END DO 

END DO 
DO k = 1,100 

DO j = 2,999 . 
DO i = 2,999 

a(i,j) = (Mi - l,j) + b(i + l,j) + b(i,j - 1) + b(i,j + 1) 
) / 4 

END DO 
END DO 
DO j = 2,999 

DO i = 2,999 
b(i,j) = a(i,j) 

END DO 
END DO 

END DO 
END 

Figure 5.8 Jacobi kernel with duplicated statements after loop distribution. 
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C AVAILARRAY = {$B(1:5,1:10)},  AVAILCS = {$CS2_B(6:10,1:10)} 

C REQDARRAY = {$B(1:10,1:10)},  GENARRAY = {$B(6:10,1:10)} 

DO  I = 1,10 

DO J = 1,10 
$A(I,J)  = $B(I,J)*$B(I,J) 

ENDDO 
ENDDO 

DO I = 1,10 
DO J = 1,10 

A(I,J)  = B(I,J)*B(I,J) 
ENDDO 

ENDDO 

Figure 5.9 Code fragment for shadow array regeneration showing AVAILARRAY, AVAILCS, 
REQDARRAY and GENARRAY sets. 

array. The statement is then replaced by one that transforms checksum values rather than the 

elements of the shadow array. The expression for transforming the checksum values is derived from 

Eq. (5.1) or (5.2), as the case may be. The loop traversing the array dimension that was summed 

becomes redundant and may be removed. This removal of the loop often dramatically reduces the 

overheads contributed by the checksum statement over the statement that it checks. 

We first determine perfect loop nests whose bodies consist solely of duplicate statements that 

are also assignment statements. (Change of flow of control within the loop body due to the presence 

of an IF statement, for example, is not allowed. This is a conservative criterion chiefly designed 

to make the task of the propagation pass easier.) For the code in Fig. 5.8, both the loop nests 

enclosing duplicate statements with j as the outer loop variable are such loop nests. Next, it is 

determined if the set of variables used by the subscript expressions in the block is a subset of the 

loop index variables of the perfect nest enclosing the block. (This restriction is also made in order 

to make the task of the propagation pass easier.) If these conditions are satisfied, the loop indices 

of the perfect nest are called the potential checksum indices for the statements in the block. For 

example, the potential checksum indices for both the duplicate assignment statements in Fig. 5.8 

are i and j. Note that loop distribution increases the number of statements enclosed in perfect 

nests as well as the number of loops in each perfect nest, which results in an increase in the number 

of potential checksum indices for each statement. This increase benefits later stages of the pass. 
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Once the potential checksum indices have been determined for each duplicate assignment state- 

ment, the syntactic structure of each such statement is examined to determine a subset of the 

potential checksum indices such that the statement could possibly be replaced by a checksum ma- 

nipulation by computing checksums over the array dimensions involving these indices. The indices 

chosen are called the candidate checksum indices in order to distinguish them from the potential 

checksum indices determined earlier. The candidate checksum indices are computed by traversing 

the syntax tree associated with the statement under consideration in a bottom-up fashion and up- 

dating two sets, called the AFFINE and NOTAFFINE sets, for each node, depending on the 

values of these sets at its children. The AFFINE set at the root of the tree contains the candidate 

checksum indices for the statement. The rules for updating the AFFINE and NOTAFFINE 

sets upon traversing the syntax tree in bottom-up fashion are given in Fig. 5.10. Note that the 

condition for suitability of subscript expressions is primarily to aid the propagation pass and could 

be made less restrictive if the propagation pass were made more sophisticated. 

We illustrate the application of the rules in Fig. 5.10 to the assignment statement shown at the 

top of Fig. 5.13. This statement is assumed to be enclosed in a perfect loop nest involving loop 

variables i and j, similar to the code in Fig. 5.11. The syntax tree and the computation of the 

AFFINE and NOTAFFINE sets for this statement are shown at the bottom of Fig. 5.13. 

Once the set of candidate checksum indices has been computed for each check statement, some 

additional conditions pertaining to the dependences in which the statements are involved need to 

be verified before a candidate checksum index can actually be chosen as the index to compute the 

checksum over. A candidate checksum index that passes all additional tests to determine its validity 

as a checksum index is called a valid checksum index. Once the set of valid checksum indices has 

been determined for all check statements, one of these may be picked as the variable to sum over. 

This index will be referred to as the chosen checksum index. 

The first condition involves dependence cycles that the statement may be involved in. A thor- 

ough treatment of dependence analysis of array statements within loops and detailed descriptions 

of algorithms to determine when various loop transformations and optimizations are valid may be 

found in [47, 48, 49]. As an example, consider the loop nest shown in Fig. 5.14, which is similar 

to the first assignment statement in Fig. 5.8 except that the left-hand side array has been changed 

from $a to $b. Both i and j are candidate checksum indices for the statement; however, neither 

is a valid checksum index since the statement is involved in dependence cycles carried by both the 

i loop as well as the j loop. To see this, consider the code that would be generated if j were the 
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(1) Unary expressions u = ±e where ± denotes a generic unary operator 

AFFINE(u)      t-      AFFINE(e) 

NOTAFFINE(u)      <-      NOTAFFINE(e) 

(2) Binary addition or subtraction o = ei + «2 or 6 = «i ~ e2 

AFFINE(b)      *-      (AFFINE(ei) - NOTAFFINE{c2)) U (AFFINE(e2) - NOTAFFINE(ei)) 

NOTAFFINE(b)      <-      NOTAFFINE{ei)UNOTAFFINE(e2) 

(3) Binary multiplication b = ei * e2 

AFFINE(b)      (-      ((AFFINE(ei) - NOTAFFINE(e2)) U (AFFINE(e2) - NOTAFFINE(ei))) 

-(AFFINE(el)n AFFINE{e2)) 

NOTAFFINE(b)      t-      NOTAFFINE(e-i)U NOTAFFlNE(e2) U (AF FINE{e!) n .4FF/iVF(e2)) 

(4) Binary division ö = ei/e2 

AFF/iV£(6)      -i-      AFF/NFfei) - (NOTAFFINE(e2)U AFFINE(e2)) 

NOT AFFIN E(b)      <-      NOTAFFINE{ex) U NOTAFFINE(e2) U AFF7WF(e2) 

(5) Constant c 

AFFINE(c)      <-      0 

NOTAFFINE(c)      tr-      0 

(6) Variable t. Z, is the set of potential checksum indices. 

AFFINE(i)      <-      0 

NOT AFFIN E{i)      «-      {i}.   i is a loop variable 

Uj{i € £},   otherwise 

(7) Array A. L is as before and S is the set of variables appearing in the array subscripts. A subscript expression is suitable if (a) A appears on 
the left-hand side, it is of the form t, else it is of the form i ± c, where i is a loop variable, c is a constant, and i does not appear in the subscript 
expression for any other dimension; or (b) it is of the form c, where c is a constant. 

AFFINE(A)      +-      U,esn£,{0>     all subscript expressions are suitable 

0,   otherwise 

NOT AFFIN E(A)      +—      0,     all subscript expressions are suitable 

UjgtO}i   otherwise 

(8) Assignment a of the form e\ *— e2 

AFFINE(a)      =      AFFINE(m) - NOTAFFINE(c2) 

NOTAFFINE(a)     =     NOTAF FI N E(ei) U NOTAFFIN E(c2) 

Figure 5.10 Rules for computing AFFINE and NOTAFFINE sets in bottom-up fashion. 
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DO j  = 2,999 
DO i = 2,999 

$a(i,j) = ($b(i - l,j) + $b(i + l,j) + $b(i,j - 1)  + $b(i,j + 1) 
1 )  / 4 + 10 

END DO 
END DO 

Figure 5.11 Code fragment illustrating affine transformation. 

DO i = 2,999 

$cs2_a(i) =  ($cs2_b(i - 1)  + $cs2_b(i + 1)  +  ($cs2_b(i)  - b(i 
,999)  + b(i,l)) + ($cs2_b(i) + b(i,1000)  - b(i,2)))  / 4 + 10 * 998 

END DO 
DO j  = 2,999 

DO i = 2,999 
$a(i,j) = ($b(i - l,j) + $b(i + l,j) + $b(i,j - 1)  + $b(i,j + 1) 
)  / 4 + 10 

END DO 
END DO 

Figure 5.12 Checksum code fragment illustrating affine transformation. 
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a(i,j)   =   (b(i-l,j)*c(j)+b(i,j-l)+b(i,j))/4+10 

NOTAFFINE =   {j} 

AFFINE =    fi} ~ 

a(i,j) 
NOTAFFINE =   $ 

AFFINE =    {i,J, 

NOTAFFINE =   {j} 

AFFINE = 

NOTAFFINE =   {j] 

AFFINE =    {i} 

NOTAFFINE =   {j} 

AFFINE =    fi 

NOTAFFINE =   {j} 

AFFINE =    fi 

b(i-lj) c(j) 
NOTAFFINE =   <|> NOTAFFINE =   i)> 

AFFINE =    {i,j}        AFFINE =    {j} 

b(ij-l) 
NOTAFFINE =   ({> 

AFFINE =    {i,j } 

NOTAFFINE =   $ 

NOTAFFINE =   $ 

AFFINE = <S> 

b(ij) 
NOTAFFINE =   $ 

AFFINE =    {ij } 

Figure 5.13 Syntax tree showing AFFINE and NOTAFFINE sets for assignment statement in 
Fig. 5.11. 
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DO j  = 2,999 
DO i = 2,999 

$b(i,j)  =  ($b(i - l,j)  + $b(i + l,j)  + $b(i,j  - 1)  + $b(i,j 
1 + 1))  / 4 

END DO 
END DO 

Figure 5.14 Code fragment illustrating dependence cycle 

DO i = 2,999 
$cs2_b(i) = ($cs2_b(i - 1)  + $cs2_b(i + 1)  +  ($cs2_b(i)  - b(i 

1 ,999)  + b(i,D)  + ($cs2_b(i) + b(i,1000)  - b(i,2)))  / 4 
END DO 
DO j  = 2,999 

DO i = 2,999 
$b(i,j)  =  ($b(i -  l,j)  + $b(i + l,j)  + $b(i,j  -  1)  + $b(i,j 

1 + 1))  / 4 
END DO 

END DO 

Figure 5.15 Checksum code illustrating problem caused by dependence cycle (incorrect code). 

chosen checksum index, which is shown in Fig. 5.15. The old value of $cs2_b(i) is used for both 

accesses b(i,j+l) as well as b(i,j-l). However, b(i,j-l) actually uses values modified during 

the current iteration of the i loop, and thus the old checksum value does not correctly represent 

the sum over these elements. 

Now we state and prove some theorems that indicate when a candidate checksum index is also 

a valid checksum index for the case of a single statement enclosed in a perfect nest of loops. This 

case actually covers a large fraction of the situations in practice since loop distribution is applied to 

the original code, which separates out statements not involved in dependence cycles into separate 

loop nests. 

Theorem 3 Consider a perfect nest of loops consisting of loops LijL?,... ,Lm enclosing assign- 

ment statement S. Suppose I\, the loop variable for the outermost loop L\, is a candidate checksum 

index for S. Then I\ is a valid checksum index for S if there is no flow dependence from S to itself. 

Proof:   Since there are no flow dependences from S to itself, all values used by S are assigned prior 
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DO LI 

DOL2 

Candidate checksum index  »-DO Lc 

DOLm 
S 
ENDDO 

ENDDO 

ENDDO 

ENDDO 

Figure 5.16 Loop nest with single assignment statement in loop body. 

to the loop nest. Thus the required checksums of the right-hand side elements may be computed 

prior to entering the loop nest and may be transformed to generate the new checksum. G 

For the next two theorems, a loop nest of the form shown in Fig. 5.16 is considered, with the 

loop variable for the cth loop Lc being a candidate checksum index. If this were chosen as the 

checksum index without verifying dependence conditions, the code shown in Fig. 5.17 would be 

generated, with CS being the checksum statement that would be generated for S. The next two 

theorems characterize when the code of Fig. 5.17 correctly updates the checksums for checking the 

code in Fig. 5.16 when dependences from S to itself are taken into account. 

Theorem 4 Consider a perfect nest of loops consisting of loops Li,Li,... ,Lm enclosing assign- 

ment statement S. Suppose Ic, the loop variable for the cth loop Lc, is a candidate checksum indrr 

for S. Then Ic is a valid checksum index for S if there is no flow dependence from S to itself cnrrn d 

by loops at level c or greater. 

Proof: We unroll the first c - 1 loops, creating a separate loop nest for each value taken by /,. 

1 < j < c. In each instance of the unrolled loop nests, we may apply Theorem 3 to conclude th.it 

Ic is a valid checksum index. Generating the checksum statement for each instance of the unrolled 

loops and rerolling to obtain the original loop ordering proves the theorem.    G 

In the following theorem, condition (3) is only violated in rare cases. We mention when tln> 

happens and what to do in this case after the theorem. 
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DO LI 

DOL2 

DOLc-1 

DOLc+1 

DOLm 

CS 

ENDDO 

ENDDO 

DOLc 

DOLc+1 

DOLm 

S 

ENDDO 

ENDDO 
ENDDO 
ENDDO 

ENDDO 
ENDDO 

Figure 5.17 Check code for loop nest of Fig. 5.16. 
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Theorem 5 Consider a perfect nest of loops consisting of loops L\, L2, ■ ■ ■, Lm enclosing assign- 

ment statement S. Suppose Ic, the loop variable for the cth loop Lc, is a candidate checksum index 

for S. Let CS be the checksum statement corresponding to S with Ic chosen as the checksum index, 

and suppose the following conditions hold: 

(1) Lc does not carry any flow dependences. 

(2) There is some valid reordering of the loops such that Lc can be moved inside all loops carrying 

flow dependences. 

(3) There are no dependences between CS and S in the reordered loops. 

Then Ic is a valid checksum index for S enclosed within the original loop nest. 

Note that this theorem implies that it is sufficient for the reordering of condition (2) to exist, 

but it need not be applied. 

Proof: It is clear that if the reordering of condition (2) exists, then Theorem 4 applies, and Ic 

is a valid checksum index for the reordered loops. In the reordered loops, there are two types of 

dependences: dependences from S to itself and dependences from CS to itself. Dependences from 

CS to S and dependences from S to CS are excluded by condition (3) of the theorem. It is clear 

that if the loops are reordered back to their original ordering after CS has been introduced, then 

the dependences from S to itself are not violated. Dependences from CS to itself are caused by 

the reading and writing of checksum variables. A checksum variable in CS is derived from the 

corresponding array variable in S and has identical subscript expressions except for the subscript 

involving Ic, which is missing. Thus the dependence vectors from CS to itself are identical to the 

dependence vectors from S to itself except for the component corresponding to the loop Lc, which 

is missing. Thus if interchanging loops Ij,h does not violate dependences from S to itself, then 

it also does not violate dependences from CS to itself. Thus reordering the loops to obtain the 

original ordering after CS. has been introduced does not violate dependences from CS to itself. 

Thus reordering loops back to their original ordering after checksum introduction is valid since no 

dependences are violated.    Ü 

Condition (3) of Theorem 5 may be violated only if the original statement assigns to and accesses 

the same array with different subscript expressions for the subscript involving the checksum index, 

as in the code in Fig. 5.18, which results in some of the array elements assigned to by the original 

code being added and subtracted off the checksum statement. This introduces flow dependences 

between the original statement and the checksum statement and antidependences from the latter to 

the former, which may prevent the reordering of the loops back into their original ordering after the 
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DO  I = 1,100 

DO J = 1,100 
A(I,J)  = ACI+1.2)  + A(I.J-l)  * B(J) 

ENDDO 
ENDDO 

Figure 5.18 Code fragment illustrating necessity of loop reordering. 

DO J = 1,100 
CS1_A(J)  = CS1_A(2)  + A(101,2)  - A(l,2)  + CSl.A(J-l)  * B(J) 
DO  I =  1,100 

A(I,J)  = A(I+1,2)  + A(I.J-l)  * B(J) 
ENDDO 

ENDDO 

Figure 5.19 Checksum introduction for the code in Fig. 5.18 after reordering (correct). 

checksum statements have been introduced. However, in this case, we may physically reorder the 

loops to obtain an ordering in which loops enclosed within the loop whose index is the candidate 

checksum index do not carry flow dependences, and then introduce the checksum statements. The 

point is illustrated in Figs. 5.18, 5.19, and 5.20. The code in Fig. 5.18 has a flow dependence carried 

by the J loop. However, the loops may be validly reordered to move the J loop outwards and I may 

be chosen as the checksum index to obtain the code in Fig. 5.19. An attempt to obtain the original 

loop ordering after checksums have been introduced results in the code in Fig. 5.20. However, this 

clearly does not yield the same results as the code in Fig. 5.19 since the value of A(l,2) used by 

the checksum statement in the first case is the value assigned in the first iteration of the previous 

I loop, while the value used in the second case is the old value of A(1,2) before executing any 

iterations of the I loop. 

Now we state and prove some theorems indicating when a candidate checksum index is a valid 

checksum index for a block of assignment statements enclosed within a perfect loop nest. However, 

before we can do this, we need to point out problems that can be caused by backward dependences. 

This problem is illustrated by the code fragment shown in Fig. 5.21. Here, there is a backward 

dependence (actually, an antidependence) from the second assignment statement to the first. Also, 

the loop variable i is a candidate checksum index for both assignment statements. Introducing 

checksum manipulations after choosing i as the checksum index, we obtain the code in Fig. 5.22. 
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DO J =  1,100 
CS1_A(J)  = CS1_A(2)  + AC101.2)  - A(l,2)  + CS1_A(J-1)  * B(J) 

ENDDO 

DO  I =  1,100 

DO  J =  1,100 

A(I,J)  = A(I+1,2)  + A(I.J-l)   * B(J) 

ENDDO 

ENDDO 

Figure 5.20 Checksum introduction for the code in Fig. 5.18 without reordering (incorrect). 

DO i = 2,100 
a(i) = a(i)  + c(i-l) 
b(i) = b(i) + a(i+l) 

END DO 

Figure 5.21 Code fragment illustrating backward dependence. 

However, the checksum manipulations do not yield the desired checksum values. This is because 

b(i) uses values of a computed prior to the loop, while $csl_b uses the newly transformed value 

of $csl_a. Thus a spurious flow dependence exists between the two checksum statements, while no 

such flow dependence exists between the two assignment statements in the original code fragment. 

First, we state an analog of Theorem 3 for the case when a block of statements is enclosed 

within a perfect loop nest. After proving the theorem, we indicate when condition (3) is violated 

and what to do in this case. 

Theorem 6  Consider a perfect nest of loops consisting of loops L\,Li2, ■ ■ ■ ,Lm enclosing assign- 

ment statement S\, S2, ■. •, Sn, with Si lexically preceding Sj if i < j. Suppose I\, the loop variable 

$csl_a = $csl_a + $csl_c + c(l) - c(100) 

$csl_b = $csl_b + $csl_a + a(101) - a(2) 

DO i = 2,100 

a(i) = a(i) + c(i-l) 

b(i) = b(i) + a(i+l) 

END DO 

Figure 5.22 Incorrect checksum code for code fragment in Fig. 5.21 illustrating problem caused 
by backward dependence. 
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DO LI 

DOL2 

SI 

S2 

ENDDO 

ENDDO 

Figure 5.23 Loop nest with multiple assignment statements in loop body. 

for the outermost loop L\, is a candidate checksum index for each Si. Let CSi be the checksum 

statement corresponding to Si with I\ chosen as the checksum index. Then I\ is a valid checksum 

index for each Si if all of the following conditions are satisfied: 

(1) No Si is involved in a dependence cycle. 

(2) There is no dependence from Si to Sj if i > j. 

(3) CSi does not access any array elements assigned by Sj for any 1 < i,j < n. 

Proof: The proof is sufficiently illustrated by the case when n = 2; i.e., there are two statements 

enclosed within the loop nest. This case is illustrated in Fig. 5.23. Since «Si and 52 are not involved 

in a dependence cycle by condition (1), and all dependences are from S\ to 52 by condition (2), 

loop distribution may be applied to yield the loop nests in Fig. 5.24. Theorem 3 then applies to 

each loop nest in Fig. 5.24. Thus I\ is a valid checksum index for each loop nest in Fig. 5.24. 

Introduction of the checksum statements for the loop nests in Fig. 5.24 yields the code in Fig. 5.25. 

By condition (3), no dependences exist between the C5j's and 5/s in Fig. 5.25. Applying loop 

fusion to Fig. 5.25 yields the code in Fig. 5.26. Since this code is precisely what would be generated 

upon choosing I\ as the checksum index, we conclude that I\ is a valid checksum index. D 

Condition (3) may be violated if some of the checksum statements need to add or subtract <>ff 

array variables in order to adjust the checksum value, and these variables are assigned to by some 

of the original statements in the loop. In this case, however, loop distribution could be used to 

separate out the statements in the body of the loop nest into separate loop nests, and Theorem 5 

could be applied to generate checksum statements for each of the loop nests. This would result in 

code resembling that in Fig. 5.25, with checksum statements alternating with original statements. 

Theorem 7 Consider a block of statements S\, S2,..., Sn enclosed within a nest of loops L\.L> /. ,„. 

Suppose the loop index of the cth loop, Ic, is a candidate checksum index for each statement >',. 

1 < i < n. Let CSi be the checksum statement corresponding to 5, with Ic chosen as the chrrksum 

index.  Then Ic is a valid checksum index if the following three conditions hold: 
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DO LI 

DOL2 

SI 

ENDDO 

ENDDO 

DO LI 

DOL2 

S2 

ENDDO 

ENDDO 

Figure 5.24 Loop distribution applied to loop nest of Fig. 5.23. 

DOL2 

CS1 

ENDDO 

DO LI 

DOL2 

SI 

ENDDO 

ENDDO 

DOL2 

CS2 

ENDDO 

DO LI 

DOL2 

S2 

ENDDO 

ENDDO 

Figure 5.25 Introduction of checksum statements for loop nests of Fig. 5.24. 
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D0L2 

CS1 

CS2 

ENDDO 

DO LI 

DOL2 

SI 

S2 

ENDDO 

ENDDO 

Figure 5.26 Loop fusion applied to loop nests of Fig. 5.25 

(1) No S{ is involved in a dependence cycle involving dependences carried solely by loops Lj, 

c < j < m. 

(2) There is no dependence from Si to Sj that is loop independent or carried by loops Lk, 

c < k < m, if i > j. 

(3) CSi does not access any array elements assigned by Sj for any 1 < i,j < n. 

Proof: The proof proceeds by first unrolling the first c — 1 loops in the loop nest and then applying 

Theorem 6 to the resulting loop nests. Condition (3) is then used to separate out the CSi's to a 

separate loop nest, and loop fusion is applied to recover the original loop nest enclosing the Si's. □ 

As before, if condition (3) is violated, loop distribution may be applied to the loops at level c 

and deeper, and checksum statements may be generated embedded within the outer c — 1 levels of 

loops. 

Often, even if the conditions stated in Theorems 4 and 7 are violated because of cycles of depen- 

dences carried by some loops inner to the loop whose index variable is the candidate checksum index 

(which we will refer to as the candidate checksum loop), it may be possible to use loop reordering to 

move the candidate checksum loop inside all loops carrying dependences. The candidate checksum 

index then becomes a valid checksum index for the reordered loops. 

Similarly, the condition prohibiting backward dependences may be enforced by reordering some 

statements in the loop body. Thus the statements in the i loop in Fig. 5.21 may be validly 

reordered since there is a loop carried antidependence from the second statement to the first, but 

no dependence from the first statement to the second.   Generating the checksum statements for 
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the reordered code yields the correct results since the checksum statements are also generated in a 

reordered fashion. 

Once the set of valid checksum indices has been determined for each statement, one of them is 

chosen as the index to compute the checksum over. For example, in the code in Fig. 5.3, the chosen 

checksum index is j, which corresponds to the second dimension of the arrays $a and $b. Once a 

valid checksum index has been chosen as the index to sum over for a statement S, the corresponding 

checksum statement is generated in the following manner. The intermediate nodes for the syntax 

tree for S are annotated with the AFFINE and NOTAFFINE sets, which were computed while 

computing the candidate checksum indices for S while traversing the tree in bottom-up fashion. 

Now, the syntax tree is traversed in top-down fashion in order to determine subexpressions that do 

not involve the checksum index j. This is indicated by the fact that the AFFINE set associated 

with the node in the syntax tree that is the root of the subexpression does not contain j. The entire 

subexpression is then multiplied by the number of times the j loop is executed. The algorithm 

for expanding constants in expressions is shown in Fig. 5.27. Only the rules for the commonly 

occurring operators are shown for brevity. As an example, on using EXPAND-CONSTANTS on the 

tree of Fig. 5.13, the only node encountered with j absent from its AFFINE set is the node for 

10. Thus this results in the expression 10 * 998 in the corresponding checksum statement, which 

is shown in Fig. 5.12. 

After constants have been expanded in affine expressions, arrays used by the expression that 

involve the checksum index as a subscript need to be replaced by checksums. These arrays may 

be found by a top-down traversal of the syntax tree and replaced by a checksum variable with the 

same subscript expressions in all dimensions except the one involving the checksum index, which 

vanishes. However, a correction needs to be made to the checksum variable in the event that the 

subscript involving the checksum index, say j, is of the form j+c or j-c, where c is a positiv.- 

constant. This point is illustrated by the code in Fig. 5.11 and the corresponding check end«- in 

Fig. 5.12. We assume that upon entering the j loop, the checksum of b(i,j), for j ranging from 

2 to 999 (the values taken by the j loop), is available. However, the checksum over b(i,j + i) is 

required. This checksum may be derived from the checksum over b(i, j) by subtracting and adding 

one element, as illustrated by the code in Fig. 5.12. The other accesses to b in the right-hand sid.' 

expression are similarly replaced by checksums incorporating the addition and subtraction of some 

extra elements. The information propagation pass is responsible for making available the checksums 

over b(i,2:999) at the entry to the j loop. 
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EXPAND_CONSTANTS(ea;pr, ci, numiter) 
1 /* expr is an expression 
2 ci is a checksum index 
3 numiter is the no. of iterations */ 
4 if !lN_SET(d,AFFINE_SET(expr)) 
5 then return BUILDJ3INARY_0P(T/Mi?S, numiter, expr) /* returns a new expr which is 
6 the old expr times numiter */ 
7 switch 
8 case BIPLUS : 
9 case BIMINUS: 

10 return BUILD_BlNARY_OP(TYPE(expr), 
11 EXPAND -CONSTANTS(LEFT_OP(expr), ci, numiter), 
12 EXPAND_CONSTANTS(RIGHT_OP(ea;pr), ci, numiter)) 
13 case BITIMES : 
14 if IN_SET(d,AFFINE_SET(LEFT_OP(expr))) 
15 then return BUlLD_BlNARY_OP(BiT/M£'5, 
16 EXPAND _CONSTANTS(LEFT_OP(eipr), ci, numiter), RIGHT. OP (expr)) 
17 else   return BUILD JINARY_OP(5/TJMES', 

18 LEFT_OP(expr), EXPAND_CONSTANTS(RIGHT_OP(expr), ci, numiter)) 
19 case BIDIVIDE : 
20 return BmhDjaiNARY.OP(BIDIVIDE, 
21 EXPAND_CONSTANTS(LEFT_OP(expr), ci, numiter), RIGHT_OP(expr)) 
22 case ARRAY-REF : 
23 case VARIABLE : 
24 return COPY_EXPR(ezpr) 

Figure 5.27 Algorithm for expanding constants in affine expressions. 
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GENERIC-DATAFLOWQ 

1 change <- TRUE 
2 while change = TRUE 
3 do change «— FALSE 
4 for i f- 0 to nfgblks 

5 do in[i] f- Dj6FGPRED(i) ouib1 
6 oldout <— oiti[i] 
7 oui[i] <— gen[i] U(*nW ~ Arc7Z[z]) 
8 if SETS_NOT_EQUAL(cwi[i], oldout) 
9 then change <- 7W.E 

Figure 5.28 Outline of generic iterative dataflow algorithm. 

5.3.3    Information propagation and check generation 

After checksum manipulation statements have been introduced, the information propagation 

pass is run. The pass may be divided into two stages. In the first stage, an iterative dataflow 

algorithm is executed to determine the checksum and array values available at various points in 

the program. In the second stage, the information about available checksums and arrays is used to 

regenerate checksums and arrays as required. We now explain each of these stages in detail. 

The outline of the basic iterative dataflow algorithm is shown in Fig. 5.28. For a more detailed 

description of the iterative dataflow approach, see [46, 49]. 

Now we discuss the specifics of the algorithm as applied to our problem, viz., computing the 

ranges of checksums and arrays available at each block in the flowgraph. 

The flowgraph for the code in Fig. 5.3 is shown in Fig. 5.29. Note that the fact that the loops 

are nonzero-trip has been used in constructing the flowgraph. Also, a dummy start node has been 

inserted. 

We introduce two sets, called AVAILARRAY and AVAILCS, with every node in the flow- 

graph. AVAILARRAY and AVAILCS store the ranges of the shadow arrays and checksums that 

are available at the end of the block of statements comprising the flowgraph node. In the case of 

AVAILARRAY, when we say that a shadow array in the set is available, we mean that the values 

stored in that array match the corresponding values in the original array that the shadow array is 

supposed to check. Similarly in the case of AVAILCS, when we say that a checksum variable or 

array is available, we mean that if a new checksum is computed over the original array that this 

checksum is supposed to check, then the values of the two checksums should match. Associated 

with every node that is a loop header are two more sets, called AVAIL ARRAY.ONS)OJEXIT and 
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START 

DOk= 1.100 

DO i = 2.999 

Scs2_a(i) = (Scs2_b(i-1) + Scs2_b(i+1) + ($cs2_b(i) - b(i,999) + b(i, 1)) + ($cs2_b(i) + Wi, 1000) - b(i.2))) / 4 

END DO 

DOj = 2,999 

DO i = 2.999 

a(i.j) = (b(i-l.j) + b(i+l.j) + b(i.j-l) + b(i.j+l))/4 

END DO 

END DO 

DO i = 2,999 

Scs2_b(i) = Scs2_a(i) 

END DO 

DO j= 2.999 

DO i = 2.999 

b(i,j) = a(i.j) 

END DO 

END DO 

END DO 

END 

Figure 5.29 Control flow graph for Jacobi code with checksums. 
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AVAILCS-ON-DO-EXIT, which store the arrays and checksums available when the loop termi- 

nates. The latter two sets are introduced to ensure a less conservative computation of available 

arrays and checksums than would otherwise occur. 

To conveniently propagate range information, we ensure that there is only one entry per variable 

in each of the above sets, and the ranges covered by any entry cover a contiguous portion of the 

array. We ensure this by making conservative choices, if necessary, on updating the sets. 

Prior to executing the iterative algorithm of Fig. 5.28, the above mentioned sets are initialized 

for every node in the flowgraph. Essentially, the statements in a basic block are traversed in lexical 

order and the sets updated for each statement as it is encountered. Initially, at the start of each 

basic block, the sets are initialized to the empty set. We make an exception in the case of the 

start node in the flowgraph. For this node, the AVAILARRAY set is initialized to include all of 

the shadow arrays that have been introduced for the program. The AVAILCS set is initialized to 

include all of the checksum variables that occur in the program, with the ranges computed from 

the first occurrence of the variable as the program is traversed in lexical order. 

For each iteration of the dataflow algorithm, all of the nodes in the flowgraph, except the 

dummy start node, are traversed one after the other. Upon entry to a basic block associated with 

a flowgraph node, the initial values of AVAILARRAY and AVAILCS are computed by taking an 

intersection of the AVAILARRAY and AVAILCS sets arriving along the incoming edges to the node. 

(The AVAILARRAY and AVAILCS values at the end of a node are propagated along all of the 

outgoing edges of the node.) However, an exception is made in the case in which the node is one that 

follows an exit from a loop. In this case, instead of the AVAILARRAY and AVAILCS sets associated 

with the loop header, the AVAILARRAY .ONJDOJEXIT and the AVAILCS-ONJ)0-EXIT sets are 

used in computing the intersection. Similarly, in the event that the node under consideration 

is a loop header itself, and the loop is not zero-trip, the AVAILARRAY.ON-DO-EXIT and the 

AVAILCS-ON-DO-EXIT are set to the AVAILARRAY and AVAILCS sets, respectively, which are 

available along the backedge. In the event that we cannot determine if the loop is always non- 

zero-trip, the AVAILARRAY.ON-DO-EXIT and the AVAILCS-ON-DOJSXIT sets are set to the 

AVAILARRAY and AVAILCS sets associated with the loop header, which are computed by taking 

intersections of all the AVAILARRAY and AVAILCS on the incoming edges (which also include 

the backedge). 

For each statement encountered in a basic block, the sets are updated in the following man- 

ner.   Only check statements result in the sets being updated, and different actions are taken for 
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check statements that are checksum statements and statements which are duplicates of the orig- 

inal statement, operating on shadow arrays. First, we discuss the update equations for the sets 

when a checksum statement cksumstmt is encountered. Let the checksum variable assigned to 

by cksumstmt be $csl_a. Let the original array variable corresponding to $csl_a be a. First, 

entries for all checksum variables corresponding to a, except possibly an earlier entry for $csl_a, 

are removed from the AVAILCS set. An earlier entry for $csl_a will also be removed if the ranges 

covered by the checksum dimension in the set and in the statement are not identical. Next, the 

ranges for each dimension are computed from the bounds of the loops enclosing cksumstmt and the 

subscript expressions for $csl_a. Recall that the subscript corresponding to the checksum index is 

removed from the checksum variable; this subscript expression is determined from the variable be- 

ing assigned to by the original statement corresponding to this check statement. The set AVAILCS 

is updated to include $csl_a if it does not already contain an entry for $csl_a. If AVAILCS already 

contains an entry for $csl_a, then the newly computed ranges are merged with the old range infor- 

mation. If the two ranges are disjoint, then the new entry replaces the old only if it covers a larger 

portion of the array. This is a conservative criterion enforced due to our requirement that there be 

a single entry for each variable in each set at any time. Also, if the set AVAILARRAY contains the 

shadow array variable, say $a, corresponding to $csl_a, then the ranges covered by $csl_a that 

were entered into AVAILCS are removed from the ranges covered by $a in AVAILARRAY. If this 

results in an empty range in some dimension or in fragmentation of the ranges, then the entry for 

$a is removed from AVAILARRAY. 

If instead of a checksum statement, a duplicate statement is encountered, then two cases need 

to be distinguished. The first case occurs when all enclosing loop bounds are constants, and all 

subscript expressions occurring in the statement are of the form i, i + c or i — c, where i is a 

variable and c is a constant (recall that these same restrictions must be satisfied by a checksum 

statement). In this case, the range covered by the left-hand side variable, say $a, is determined. 

The variable $aand the range covered by it are entered into AVAILARRAY or are merged with 

the range information already in AVAILARRAY if there is already an entry in AVAILARRAY fur 

$a. If there is an entry for a checksum variable corresponding to $a (such as $csl_a or $cs2.a. 

for example) in AVAILCS, then the ranges covered by $a that were'added to the AVAILARRAY 

set are removed from the corresponding checksum variable entry in AVAILCS. If this loads tu 

some dimension becoming empty or fragmented, then the checksum variable entry is removed fnun 

AVAILCS. 

71 



Update rules upon entering node n of the flowgraph 

AVAILCS(n)   <-   njefgpred{n)AVAILCS(j) 

AVAILARRAY(n)   <-   Djef gpred{n) AVAILARRAY {j) 

Update rules for a checksum statement CS 

GENCS   f-   all checksum elements accessed by CS 

AVAILCS   <-   AVAILCS U GENCS 

KILLARRAY   <—   all shadow array elements covered by checksum elements 

assigned to by CS 

AVAILARRAY   f-   AVAILARRAY - KILLARRAY 

Update rules for a duplicate check statement DC 

GENARRAY   f-   all shadow array elements accessed by DC 

AVAILARRAY   <-   AVAILARRAY U GENARRAY 

KILLCS   <-   all checksum elements covering any portion of the shadow array 

elements assigned to by DC 

AVAILCS   f-   AVAILCS - KILLCS 

Figure 5.30 Rules for updating AVAILARRAY and AVAILCS sets. 

The second case occurs when the duplicate statement's subscript expressions or the bounds of 

the loops enclosing it do not satisfy the conditions mentioned earlier. In this case, all arrays accessed 

by the statement are added to the AVAILARRAY set, with the ranges covering the entire array 

(Code copying the entire original array into the corresponding shadow array will be generated just 

prior to the execution of the statement by the second stage of the propagate pass). All checksum 

variables corresponding to the shadow arrays added to AVAILARRAY are removed from AVAILCS. 

The rules for updating the AVAILARRAY and AVAILCS sets in each iteration of the flowgraph 

are shown in Fig. 5.30. Some of the details discussed in the previous paragraphs have been omitted 

from the figure. 

Once the dataflow algorithm has converged, the second stage of the pass, which involves regen- 

eration of checksums and shadow elements, is performed. For example, if a statement within a loop 

needs the checksum value over a certain array, but this is not available at that point (which can be 

determined by examining the AVAILCS set just before the statement), a loop needs to be inserted 

prior to the loop enclosing the statement in which the required checksum is recomputed by summing 

the appropriate array elements. As we explain later, we also attempt to check that the elements 
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being summed to regenerate the checksum have not been corrupted by errors. If a statement within 

a loop requires shadow array values that are not available (which can be determined by examining 

the AVAILARRAY set just before the statement), these are regenerated by inserting a loop nest 

prior to the loop enclosing the statement, which copies the corresponding original array values into 

the required shadow array values. As we explain later, we also generate a check to determine if the 

elements being copied over are correct, if possible. 

First, one more pass over the flowgraph is used to compute the AVAILARRAY and AVAILCS 

sets for each individual statement in the program, rather than just the final values at the end of 

each basic block. The list of statements comprising the program is then traversed in lexical order. 

Recall that checksum statements are enclosed in perfect loop nests whose bodies consist solely of 

checksum statements. When such a loop nest is encountered, the checksums that are used by each 

statement in the body are determined by traversing the syntax tree representing the right-hand 

side of each statement, collecting the checksum variables which appear, and computing the ranges 

covered from the subscript expressions and the enclosing loop bounds. The set of these checksums 

is denoted by REQDCS. The values that actually need to be regenerated at the start of the loop 

nest (which we denote by GENCS) are determined by subtracting the AVAILCS set at the entry to 

the loop nest enclosing the checksum statements from the REQDCS set. Once GENCS has been 

determined for the loop body, code for recomputing these checksums is inserted at the beginning 

of the loop body. Also, it is determined if the shadow array values for the array values that are 

summed to regenerate the checksums are available upon entry to the loop nest. If so, code for 

performing a comparison check of the array values being summed and the corresponding shadow 

array values is inserted prior to the loop nest. These rules are summarized in Fig. 5.31. 

An example code fragment with values of the various sets is shown in Fig. 5.32, and the check 

code that would be generated for it is shown in Fig. 5.33. 

Loop nests that enclose check statements (but not checksum statements) are handled in a 

different manner since these check the original statements by performing duplicate operations rather 

than checksum manipulations and thus affect the values of the AVAILCS and AVAILARRAY sets 

in a different manner. As before, the entire body of the loop nest is traversed. For each assignment 

statement encountered in the loop nest, the shadow array variables and ranges are computed from 

the expression tree for the statement, the subscript expressions and the loop bounds. If the ranges 

cannot be computed due to the loop bounds or subscript expressions being complicated, or because 

the statement is not enclosed in a perfect loop nest, it is assumed that the entire array is used by 
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For a loop nest enclosing checksum statements 

REQDCS   «-   all checksum elements used by all checksum 

statements in loop body 

GENCS   <-   REQDCS - AVAILCS 

SUMVALUES   <-   array values covered by GENCS 

CHECKVALUES   <-   SUMVALUES n AVAIL ARRAY 

Regenerate checksum elements in GENCS by summing the corresponding array values. 

Compare shadow array values in CHECKVALUES with original array values. 

For a loop nest enclosing duplicate check statements 

REQDARRAY   <-   all shadow array elements used by all check 

statements in loop body 

GEN ARRAY   <-   REQDARRAY - AVAIL ARRAY 

SUMCS   <-   all checksums that can be generated from GEN ARRAY 

CHECKCS   <-   SUMCS D AVAILCS 

Regenerate shadow array elements in GEN ARRAY by copying the corresponding array values. 

Generate the checksums in CHECKCS by summing the original array values they cover. 

Compare the checksums in CHECKCS with the corresponding checksums in AVAILCS. 

Figure 5.31 Rules for regenerating checksums and shadow arrays. 
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C AVAILARRAY = {$B(6:10,1:10)}, AVAILCS = {$CS2_B(1:5,1:10)} 

C REQDCS = {$CS2_B(1:10,1:10)} 

C GENCS = REQDCS - AVAILCS = {$CS2_B(6:10,1:10)} 

DO I = 1,10 

$CS2_A(I)  = $CS2_B(D  + 10*10 

ENDDO 

DO  I = 1,10 

DO J = 1,10 

A(I,J)  = B(I,J)  + 10 

ENDDO 

ENDDO 

Figure 5.32 Code fragment for checksum regeneration showing AVAILARRAY, AVAILCS, RE- 
QDCS, and GENCS sets. 

the statement. ' The array elements accessed by check statements within the loop nest are stored 

in a set called REQDARRAY. The array elements that are actually required by the statement 

(which we store in a set called the GENARRAY) are computed by subtracting the entries in 

the AVAILARRAY set for the statement from the REQDARRAY set for the loop nest. Code for 

copying over the values of the corresponding original array elements into the shadow array elements 

in GENARRAY is then generated prior to entering the loop nest. The AVAILCS set for the loop 

header is examined to determine if any checksum variables are available to check the array elements 

being copied over. If this is the case, then code is also inserted to sum the elements being copied 

over and perform a comparison check against the available checksum values. The code fragment 

in Fig. 5.9 shows the AVAILARRAY, AVAILCS, REQDARRAY, and GENARRAY sets associated 

with a loop nest enclosing a nonlinear check statement, and the check code corresponding to this 

code fragment is shown in Fig. 5.34. 

As an example, the values of AVAILARRAY and AVAILCS after convergence are shown in 

Fig. 5.35 for selected edges of the control flow graph of Fig. 5.29. 

5.4    Data Distribution Specification for Check Data for Distributed-Memory Parallel 

Programs 

The algorithms described in the previous section result in the generation of a serial program 

with checks that is capable of detecting transient errors. However, permanent errors may still go 
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C AVAILARRAY = {$B(6:10,1:10)}, AVAILCS = {$CS2_B(1:5,1:10)} 

C REQDCS = {$CS2_B(1:10,1:10)} 

C GENCS = REQDCS - AVAILCS = {$CS2_B(6:10,1:10)} 

C REGENERATE CHECKSUMS 

DO I = 6,10 

$CS2_B(D = 0 
DO J = 1,10 

$CS2_B(I) = $CS2_B(I) + B(I,J) 

ENDDO 

ENDDO 

C CHECK ELEMENTS WHICH WERE ADDED 

DO I = 6,10 

DO J = 1,10 
IF (COMPARE($B(I,J),B(I,J)) .EQ. 1) 

CALL ERROR_HANDLER 

ENDDO 

ENDDO 

DO I = 1,10 

$CS2_A(I) = $CS2_B(I) + 10*10 

ENDDO 

DO I = 1,10 

DO J = 1,10 

A(I,J) = B(I,J) + 10 

ENDDO 

ENDDO 

Figure 5.33 Checksum regeneration for code fragment in Fig. 5.32. 
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C AVAILARRAY = {$B(1:5,1:10)}, AVAILCS = {$CS2_B(6:10,1:10)} 

C REQDARRAY = {$B(1 :.10,1:10)}, GENARRAY = {$B(6:10,1:10)} 

C COPY ARRAY ELEMENTS INTO SHADOW ARRAYS 

DO I = 6,10 

DO J = 1,10 

$B(I,J) = B(I,J) 

ENDDO 

ENDDO 

C CHECK ELEMENTS WHICH WERE COPIED 

DO I = 6,10 

T = 0 

DO J = 1,10 

T = T + B(I,J) 

ENDDO 

IF (C0MPARE($CS2_B(I),T) .EQ. 1) 

CALL ERROR_HANDLER() 

ENDDO 

DO I = 1,10 

DO J = 1,10 

$A(I,J) = $B(I,J)*$B(I,J) 

ENDDO 

ENDDO 

DO I = 1,10 

DO J = 1,10 

A(I,J) = B(I,J)*B(I,J) 
ENDDO 

ENDDO 

Figure 5.34 Shadow array regeneration for code fragment in Fig. 5.9. 
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A VAILCS =   (Scs2_a(2:999,2:999), Scs2_b(2:999,2:999)) 

AVAILARRAY =   9 

AVAILCS =   (Scs2_a(2:999.2:999), Scs2_b(2:999.2:999)| 

AVA1LARRAY=   * 

AVAILCS=  (Scs2_a(2:999,2:999), Scs2_b(2:999,2:999)) 

AVAILARRAY =   * 

Scs2_a(i) = (Scs2_b(i-1) + Scs2_b(i+1) + (Scs2_b(i) - b(i,999) + b(i,l)) + (Scs2_b(i) + b(i.lOOO) - b(i.2))) / 4 

END DO 

VAILCS =   (Scs2_a(2:999,2:999). Scs2J>(2:999.2:999)) 

VAILARRAY=   * 

DOj = 2.999 

$cs2_a(2:999,2:999), Scs2_b(2:999,2:999)) 

AVAILCS =   ($cs2_a(2:999,2:999), Scs2_b(2:999,2:999)} 

AVAILARRAY-- 

DOj = 2,999 

AVAILCS =   ($cs2_a(2:999,2:999), Scs2_b(2:999.2:999)) 

AVAILARRAY=   * 

Figure 5.35 Final values of AVAILARRAY and AVAILCS on selected edges of the flowgraph of 
Fig. 5.29. 
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undetected if such errors affect the check phase in such a manner as to cause it to pass. In a parallel 

processing environment, one approach to guaranteeing high error coverage would be to have each 

processor check not its own, but a neighboring processor's data. One approach that has been 

used to aid compilers in the generation of parallel programs has been to specify the distribution 

of the arrays accessed by the program over the set of processors using data distribution directives 

and have the compiler automatically insert the message calls needed to transfer non-local data 

to a processor whenever such data is accessed. The basis for communication generation is the 

owner-computes rule, where a processor that owns the element being assigned to in an assignment 

statement is responsible for executing that statement, while if any of the elements being accessed by 

the statement are not local to the processor performing the assignment, these are communicated via 

messages. We leverage off the compiler efforts in this direction by deriving the data distributions 

for the extra arrays and checksums introduced by our compiler from the data distributions in the 

original program in such a manner that for each original data element, the data element checking 

it resides on a different processor. The parallel code generated by the compiler then has all of 

the message communication required for updating the check data and performing the comparison 

checks in place. 

In the rest of this section, we discuss some features of HPF used by our compiler to specify 

data distributions and discuss how our compiler specifies data distributions to achieve our goal of 

having each processor's data checked by a different processor. 

5.4.1    High Performance Fortran 

High Performance Fortran (HPF) [10] is an extension of Fortran 90 [50] that allows portable 

parallel programs to be written. HPF directives begin with !HPF$ and are treated as comments 

by any compiler that does not have the capacity to recognize and use HPF information. The HPF 

directives which are important from our perspective are the DISTRIBUTE, ALIGN, and PROCESSORS 

directives. 

The DISTRIBUTE directive allows the programmer to specify data distributions for objects that, 

may either be arrays or templates. Templates are placeholders that occupy no memory; different, 

arrays may be mapped to the same template. The data distribution of the template is then used for 

all arrays mapped to it. Two general kinds of distributions are block and cyclic. Block distributions 

specify that each processor gets a contiguous piece of the object, while cyclic distributions specify 

that each processor gets a piece of the object at regular intervals throughout the object.   Some 
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example distributions and the syntax used for specifying them are shown in Fig. 5.36. The symbol 

* in some of the data distribution specification indicates that the corresponding array dimension 

resides on a single processor. In this case, we say that the array dimension has been sequentialized. 

The ALIGN directive is used to align one array with another. An element that is aligned with 

another element resides on the same processor. Some examples of array alignment and the syntax 

used to achieve them are specified in Fig. 5.37. 

The PROCESSORS directive is used to specify an abstract topology which can be a multidimen- 

sional mesh. The processor arrangement can then be used in distribute directives to specify data 

distributions across processor configurations. 

5.4.2    Data distribution specifications for check data 

In most of the following examples, we will concentrate on block distributed arrays; the ideas 

behind handling arrays that are distributed in a cyclic or block-cyclic fashion are similar. 

Data distribution specification for check data (checksums and shadow arrays) needs to be spec- 

ified so that the original data and the data checking it reside on different processors. This, together 

with the owner-computes rule, ensures that each data element is subjected to a check on a different 

processor, thus increasing the likelihood of detecting single processor faults. Essentially, in the 

case of shadow arrays, a distribution is chosen that is almost identical to the distribution of the 

corresponding original array, except that the data elements in one of the distributed dimensions are 

shifted cyclically so that a data element and the corresponding shadow element reside on different 

processors. This is indicated for a block distributed array in Figs. 5.38 and 5.39. Note that the 

WRAP directive is used to specify that the elements that "fall off the end" of the template are to 

wrap around to the first processor. WRAP is not a standard HPF directive; however, the same effect 

can be achieved in a somewhat roundabout manner by using only standard HPF. Instead, we use 

WRAP for brevity. 

To determine how a checksum variable is to be distributed, we first determine how the shadow 

array variable corresponding to the original array being checked by the checksum would be dis- 

tributed. Two cases are distinguished. The first corresponds to the case when the dimension being 

summed over is sequentialized. In this case, the other dimensions of the checksum are distributed 

in a manner identical to the distribution of the shadow array. This case is illustrated in Figs. 5.40 

and 5.41. 
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Figure 5.36 Examples of data distributions for a two-dimensional array onto a four-processor 
arrangement. 
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(c) ALIGN A3(I,  J)  WITH B3(J,   I) 

Figure 5.37 Examples of alignments. 

DOUBLE PRECISION b(64,64) 

DOUBLE PRECISION $b(64,64) 

!HPF$ PROCESSORS :: p(4) 

!HPF$ DISTRIBUTE (*, BLOCK) ONTO p :: b 

!HPF$ TEMPLATE, DISTRIBUTE (*, BLOCK) ONTO p :: template$0(64, 64) 

!HPF$ ALIGN (:,:) WITH template$0(:,:) :: b 

!HPF$ ALIGN (:,hpf$0) WITH template$0(:,hpf$0 + 16) WRAP :: $b 

Figure 5.38 Data distribution specification for a block distributed array. 
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b $b 

Figure 5.39 Illustration of data distribution for declaration in Fig. 5.38. 

DOUBLE PRECISION c(64,64) 
DOUBLE PRECISION $c(64,64) 

C $cs2_c is obtained by summing the second dimension of c 
DOUBLE PRECISION $cs2_c(64) 

!HPF$ PROCESSORS  ::  p(4) 
!HPF$ TEMPLATE,  DISTRIBUTE  (BLOCK,  *)  ONTO p  ::  template$0(64,  64) 
!HPF$ ALIGN  (:,:)  WITH template$0(:,:)   ::   c 
!HPF$ ALIGN  (hpf$0,:)  WITH template$0(hpf$0 + 16,:)  WRAP  ::  $c 
!HPF$ TEMPLATE,  DISTRIBUTE(BLOCK)  ONTO p  ::  TEMPLATES1(64) 
!HPF$ ALIGN $cs2_c(hpf$0) WITH TEMPLATE$l(hpf$0+16) WRAP 

Figure 5.40 Checksum data distribution when the dimension being summed over is sequentialized. 
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c $c $cs2_c 

Figure 5.41 Illustration of data distribution for declaration in Fig. 5.40. 
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DOUBLE PRECISION c(64,64) 
DOUBLE PRECISION $c(64,64) 

C $csl_c is obtained by summing the first dimension of c 
DOUBLE PRECISION $csl_c(4,64) 

!HPF$ PROCESSORS   ::  p(4) 
!HPF$ DISTRIBUTE  (BLOCK,  *)  ONTO p  ::   c 
!HPF$ TEMPLATE,  DISTRIBUTE  (BLOCK,  *)  ONTO p  ::  template$0(64,  64) 
!HPF$ ALIGN  (:,:)  WITH template$0(:,:)   ::   c 
!HPF$ ALIGN  (hpf$0,:)  WITH template$0(hpf$0 + 16,:)  WRAP  ::   $c 
!HPF$ TEMPLATE,  DISTRIBUTE(BLOCK,*)  ONTO p  ::  TEMPLATES1(4,64) 
!HPF$ ALIGN $csl_c(hpf$0,:)  WITH TEMPLATESKhpf$0+1,:)  WRAP 

Figure 5.42 Checksum data distribution when the dimension being summed over is distributed. 

c $c $cs2_c 

Figure 5.43 Illustration of data distribution for declaration in Fig. 5.42. 

The second case occurs when the dimension that was summed over was not sequentialized but, 

distributed. In this case, the checksum is expanded to include an extra dimension corresponding to 

the dimension being summed over, with the number of elements in the expanded dimension being 

equal to the number of processors in that dimension. The expanded dimension is then distributed 

so that each processor gets one element in each dimension, with the WRAP directive being specified 

if the corresponding shadow array would have been wrapped around for this dimension. This case 

is illustrated in Figs. 5.42 and 5.43. 

In the case of a block distribution, each checksum element now stores the sum over a contiguous 

block of elements in the dimension being summed over, instead of storing the sum over the entire1 

dimension.  This may require the replacement of checksum manipulation statements in the code 
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by statements manipulating the new checksums. Usually, this replacement takes the form of a 

prologue, a body, and an epilogue. This transformation may be illustrated by comparing the 

checksum manipulation statements in Figs. 5.4 and 5.5. 

5.5    Summary 

In this chapter, we have discussed the algorithms used by a compiler pass that generates error- 

detecting code based on checksum-based checks. Identification of loops that perform affine trans- 

formations on arrays involves examining the syntactic structure of the statements within the loop 

and the data dependences within the loop. Checksum-based checks are then generated for such 

loops while the remainder of the code is checked by duplicating the computations on separate copies 

of the original arrays. An information propagation pass based on a dataflow analysis framework 

is used to propagate information about available checksums and shadow arrays throughout the 

program so that checksums and shadow arrays are regenerated only as required. In the interest of 

high error coverage, the elements used to regenerate checksums are checked against their shadow 

values, if available, and conversely, the elements used to regenerate shadow array values are checked 

against available checksum values. 

In a parallel processing environment, it is desirable to perform the checking of one processor's 

data on a different processor; we achieve this, by deriving the data distributions of the check data 

from the data it checks in such a manner that an original data element and the element that checks 

it reside on different processors. A parallelizing compiler for distributed-memory machines is then 

used to automatically generate a parallel program in which the checks on the data owned by one 

processor are performed on a different processor, with the communication required to achieve this 

being automatically inserted by the compiler. 

In the next chapter, we present results on applying our compiler to three programs and demon- 

strate the overheads of the error-detecting parallel program over the non-error-detecting version. 
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CHAPTER 6 

RESULTS FOR COMPILER-GENERATED 

ERROR-DETECTING PARALLEL PROGRAMS 

To illustrate the working of our compiler passes, we ran several Fortran programs annotated with 

HPF data distribution directives through it. We present the overhead results of the parallel error- 

detecting versions over the parallel versions with no error-detection for three of the applications 

here. The three applications are a parallel matrix multiplication routine computing AB = C where 

A and C are distributed blockwise by rows and B is distributed blockwise by columns on a linear 

array, a Jacobi iterative solver with the grid points distributed blockwise in both dimensions on 

a 2-D mesh, and an ADI (Alternating Direction Implicit) solver with the grid points distributed 

blockwise by rows on a linear array. The first two programs consist of only linear statements, while 

the last consists of a mixture of linear and nonlinear loops. Two versions of each of these programs 

are listed in the Appendix; the first is the input program to our compiler, and the second is the 

output generated by our compiler. 

The speedups on 16 processors for the three programs considered are shown in Figs. 6.1, 6.2. 

and 6.3. 

Apart from presenting results on the overhead incurred because of our error detection mech- 

anism, we also wanted to illustrate that the reuse of checksums across loops facilitated by our 

information propagation pass would result in lower overheads than the approach proposed in [">]. 

which would cause checksums required by each loop to be regenerated prior to the loop. To illus- 

trate this point we also implemented a version of the parallel, error-detecting Jacobi solver, which 

regenerated checksums prior to each loop instead of reusing available checksum values. 

The testbedon which our experiments were performed was a 16-processor Intel Paragon. 

6.1    Time Overhead 

The overhead results are shown in Figs. 6.4, 6.5, and 6.6. The overheads diminish with an 

increase in problem size for the first two applications. However, the overhead for the ADI applica- 

tion is more than double that of the original program, because, for the first two applications, all 

of the statements within the main loops are linear and are therefore checkable by only checksum 
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Figure 6.1 Speedup of matrix multiplication on 16 processors. 
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Figure 6.2 Speedup of Jacobi solver on 16 processors. 
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Figure 6.3 Speedup of ADI solver on 16 processors. 

manipulations. However, the main loop of ADI integration contains interspersed linear and non- 

linear statements. This results in switching between checksum manipulations and duplicating the 

computations on shadow arrays, which also requires checksum or shadow array regeneration and 

checking of the data used in the regeneration, as described in Chapter 5. Since the shadow arrays 

and checksums are maintained on different processors than the data they check, the regeneration 

step also results in communication of large amounts of data. 

6.2    Error Coverage 

In addition to the time overheads, additional experiments were run in order to evaluate the 

effectiveness of the error-detecting parallel programs generated by our compiler in actually detecting 

errors. Following each statement in the parallel program that performed floating-point operations, 

an error injection routine was called, which replaced the result of the statement by a random word 

with a probability of 0.01. A hundred runs were performed for each of the three applications 

described earlier; in each case, the errors were detected. Thus for the set of experiments we 

performed, error coverage was 100%. The results are summarized in Table 6.1. 
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Figure 6.4 Overhead of check code for matrix multiplication. 
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Figure 6.5 Overhead of check code for Jacobi solver. 

Table 6.1 Error detection coverage for transient word-level errors. 

Mmul Jacobi ADI 
Percent Coverage 100 100 100 
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Figure 6.6 Overhead of check code for ADI integration. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

In this dissertation we have contributed to both the theory and implementation of error- 

detecting programs using the algorithm-based fault tolerance methodology. 

We have, for the first time, proposed a general methodology for locating and recovering from 

^-faults in a parallel processing environment using the algorithm-based approach. In contrast with 

earlier researchers in the area, we have demonstrated the practicality of our approach by designing 

fault-locating and correcting versions of three numerical algorithms and implementing them on a 

distributed-memory parallel computer. 

One direction for future work would be to examine the sharpness of the bounds for the error- 

correction capabilities of our method. Our error recovery algorithm guarantees recovery from t or 

fewer failures if check processors are not affected, but if check processors are affected, our recovery 

algorithm guarantees recovery only if a total of 2(%/i + 1 — 1) or fewer processors have failed. Since 

our recovery methodology uses coding-theoretic techniques, we feel intuitively that we should be 

able to recover from |_^J faults because a maximum-distance code [35] (such as the Reed-Solomon 

code, which we use for our recovery mechanism) with t check bits can recover from |_^pj errors. It 

would be interesting to study if our present bound oh recovery could be improved to this value and 

to give a simple recovery algorithm which was capable of recovering from this number of faults. 

(Recall that our general recovery algorithm can recover from any recoverable fault pattern, but is 

rather complex.   The simplifications which apply to the case when at most 2(v*+T — 1) faults 

have occurred do not apply to the general case). 

The second contribution of our dissertation has been to demonstrate that the checksumming 

approach to checking linear and affine transformations, which has been heavily used in the design <>f 

ABFT programs, can be successfully incorporated into a compiler. Although this idea was first in- 

vestigated in [5], it was not carried to full implementation. In our dissertation, we demonstrate that 

apart from the syntactic structure, one also must examine the dependencies in which a statement 

is involved to determine whether it performs an affine transformation. This aspect was ignored in 

[5]. We have established sufficient conditions for when a candidate checksum statement (one whi< h 

possesses the necessary syntactic structure) is actually a valid checksum statement (one that can 

actually be checked using checksum manipulations). Ignoring the dependence conditions may lead 
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to incorrect code in some cases. Another important improvement is the introduction of a dataflow 

analysis phase that inserts checks and recomputes checksums only where necessary, as opposed to 

the earlier approach, which would recompute checksums prior to and generate checks after each 

loop nest. 

At present, our compiler is only able to generate checksum-based checks for loops implementing 

linear or affine transformations that additionally satisfy the restrictions of constant loop bounds 

and array subscripts of a very simple form. These restrictions are not dictated by the rules for 

determining affine transformations but by the fact that the information propagation pass performs 

set operations that can be done in a particularly simple manner if the present restrictions on the loop 

bounds and array subscripts are imposed. At present, the set operations involve sets that consist 

of ranges of integers specified by a constant upper bound and a constant lower bound. Removing 

these restrictions would require the information propagation pass to perform set operations on sets 

of integers with a more general form. For example, the upper and lower bounds of a set may be 

described by symbolic expressions, and the elements in the set may not include all of the integers 

between these bounds. Thus, improving the information propagation pass would represent a serious 

challenge and would probably require the use of extensive symbolic manipulation techniques of the 

sort implemented in Mathematica™. 
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APPENDIX A 

COMPILER OUTPUT 

In this appendix, we show the code for three programs that were transformed by our compiler 
to generate error-detecting programs. For each of the programs, we show the input to our compiler, 
which is a Fortran program with HPF data distribution annotations, and the output generated by 
our compiler, which is an augmented version of the original serial program with additional code 
inserted for manipulating shadow arrays and checksums and additional data distribution directives 
specifying the distributions of the new data introduced by the compiler. 

A.l    Matrix Multiplication 

A. 1.1    Input 

program mmul 

integer i,j,k 
double precision A(64,64),B(64,64),C(64,64) 

!hpf$ processors p(4) 
!hpf$ distribute (block,*) onto p :: A,C 

!hpf$ distribute (*,block) onto p :: B 

do i = 1,64 

do j = 1,64 

C(i,j) = 0 

do k = 1,64 

C(i,j) = C(i,j) + A(i,k)*B(k,j) 

enddo 

enddo 

enddo 

end 

A.l.2 Output 

PROGRAM mmul 

IMPLICIT NONE 
DOUBLE PRECISION $T_0(4,64) 

DOUBLE PRECISION $T(4,64) 

INTEGER $p 

INTEGER $i2 

INTEGER $il 
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DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER i, j, k 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

$csl_c(4,64) 

$csl_a(4,64) 

$cs2_c(64) 

$b(64,64) 

$a(64,64) 

$c(64,64) 

a(64,64) 

b(64,64) 

c(64,64) 

: template$0(64, 64) 

16,:) WRAP :: $b 

: template$l(64, 64) 

16,:) WRAP :: $a 

: template$2(64, 64) 

16,:) WRAP :: $c 

TEMPLATE$3(4,64) 

!HPF$ PROCESSORS :: p(4) 

!HPF$ DISTRIBUTE (BLOCK, *) ONTO p :: a, c 

!HPF$ DISTRIBUTE (*, BLOCK) ONTO p :: b 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p 

!HPF$ ALIGN (:,hpf$0) WITH template$0(hpf$0 + 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p 
!HPF$ ALIGN (hpf$0,:) WITH template$l(hpf$0 + 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p 

!HPF$ ALIGN (hpf$0,:) WITH template$2(hpf$0 + 

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK,*) ONTO p :: 

!HPF$ ALIGN $csl_c(hpf$0,:) WITH TEMPLATE$3(hpf$0+1,:) WRAP 

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK,*) ONTO p :: TEMPLATE$4(4,64) 

!HPF$ ALIGN $csl_a(hpf$0,:) WITH TEMPLATE$4(hpf$0+l,:) WRAP 

DO $il = 1,64 

DO $i2 = 1,64 

$c($il,$i2) = c($il,$i2) 

END DO 

END DO 

DO $il =1,64 

DO $i2 = 1,64 

$a($il,$i2) = a($il,$i2) 

END DO 

END DO 

DO $il = 1,64 

DO $i2 = 1,64 

$b($il,$i2) = b($il,$i2) 

END DO 

END DO 

DO i = 1,64 

$cs2_c(i) = (64 - 1 + 1) * 0 

DO j = 1,64 

c(i,j) = 0 

END DO 

99 



END DO 
DO $p = 1,4 

DO $i2 = 1,64 
$csl_a($p,$i2) = 0 

END DO 
END DO 
DO $il =1,16 

DO $p = 1,4 
DO $i2 = 1,64 

$csl_a($p,$i2) = $csl_a($p,$i2) + a(($p - 1) * 16 + $il,$i2 

1     ) 
END DO 

END DO 
END DO 
DO $p = 1,4 

DO $i2 = 1,64 
$csl_c($p,$i2) = 0 

END DO 
END DO 
DO $il =1,16 

DO $p = 1,4 
DO $i2 = 1,64 

$csl_c($p,$i2) = $csl_c($p,$i2) + c(($p - 1) * 16 + $il,$i2 

1      ) 
END DO 

END DO 
END DO 
DO $il = 1,64 

DO $i2 = 1,64 
IF (compare($a($il,$i2),a($il,$i2)) .EQ. 1) CALL error_handle 

1    r() 
END DO 

END DO 
DO $il = 1,64 

DO $i2 = 1,64 
IF (compare($b($il,$i2),b($il,$i2)) .EQ. 1) CALL error.handle 

1    r() 
END DO 

END DO 
DO j =1,64 

DO k = 1,64 
DO $p = 1,4 

$csl_c($p,j) = $csl_c($p,j) + $csl_a($p,k) * b(k,j) 
END DO 

END DO 
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END DO 

DO i = 1,64 

DO j =1,64 

DO k = 1,64 

c(i,j) = c(i,j) + a(i,k) * b(k,j) 

END DO 

END DO 

END DO 

DO $p = 1,4 

DO $i2 = 1,64 

IF (compare($T($p,$i2),$csl_a($p,$i2)) .EQ. 1) CALL errorjian 

1    dlerO 

END DO 

END DO 

DO $p = 1,4 

DO $i2 = 1,64 

$T_0($p,$i2) = 0 

END DO 

END DO 

DO $il = 1,16 

DO $p = 1,4 

DO $i2 = 1,64 

$T_0($p,$i2) = $T_0($p,$i2) + c(($p - 1) * 16 + $il,$i2) 

END DO 

END DO 

END DO 

DO $p = 1,4 

DO $i2 = 1,64 

IF (compare($T_0($p,$i2),$csl_c($p,$i2)) .EQ. 1) CALL errorJi 

1    andlerO 

END DO 

END DO 

DO $il = 1,64 

DO $i2 = 1,64 

IF (compare($b($il,$i2),b($il,$i2)) .EQ. 1) CALL error_handle 

1    r() 

END DO 

END DO 

DO $il = 1,64 

DO $i2 =1,64 
IF (compare($a($il,$i2),a($il,$i2)) .EQ. 1) CALL error_handle 

1    r() 

END DO 

END DO 

END 
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A.2    Jacobi Solver 

A.2.1    Input 

program jacobi 
double precision a(1000, 1000), b(1000, 1000) 

!hpf$ processors p(2,2) 

!hpf$ distribute (block.block) onto p :: A,B 

do k = 1, 100 

do j =2, 999 

do i = 2, 999 

a(i, j) = (b(i - 1, j) + b(i + 1, j) + b(i, j - 1) + b(i, 

*j + D) / 4 
enddo 

enddo 

do j =2, 999 

do i = 2, 999 

b(i, j) = a(i, j) 

enddo 

enddo 

enddo 

end 

A.2.2 Output 

PROGRAM jacobi 

DOUBLE PRECISION $T_0(1000,2) 

DOUBLE PRECISION $T(1000,2) 

INTEGER $p 

INTEGER $i2 

INTEGER $il 
DOUBLE PRECISION $cs2_a(1000,2) 

DOUBLE.PRECISION $cs2_b(1000,2) 

DOUBLE PRECISION $a(1000,1000) 

DOUBLE PRECISION $b(1000,1000) 

INTEGER p(2,2) 

DOUBLE PRECISION a(1000,1000) 

DOUBLE PRECISION b(1000,1000) 

INTEGER template$0(1000,1000) 

INTEGER template$l(1000,1000) 

INTEGER k, j, i 

!HPF$ PROCESSORS :: p(2,2) 
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!HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO p :: a, b 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, BLOCK) ONTO p :: template$0(1000, 1000) 

!HPF$ ALIGN (hpf$0,hpf$1) WITH template$0(hpf$0 + 500,hpf$l) WRAP :: $a 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, BLOCK) ONTO p :: templates1(1000, 1000) 

!HPF$ ALIGN (hpf$0,hpf$1) WITH templates1(hpf$0 + 500,hpf$l) WRAP :: $b 

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK.BLOCK) ONTO p :: TEMPLATE$2(1000,2) 

!HPF$ ALIGN $cs2_a(hpf$0,hpf$1) WITH TEMPLATE$2(hpf$0+500,hpf$1+1) WRAP 

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK,BLOCK) ONTO p :: TEMPLATE$3(1000,2) 

!HPF$ ALIGN $cs2_b(hpf$0,hpf$1) WITH TEMPLATE$3(hpf$0+500,hpf$1+1) WRAP 

DO $il = 2,999 

DO $i2 = 2,999 

$a($il,$i2) = a($il,$i2) 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 1,1000 

$b($il,$i2) = b($il,$i2) 
END DO 

END DO 

DO $il = 2,999 

DO $p = 1,2 

$cs2_a($il,$p) = 0 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 2,500 

$cs2_a($il,l) = $cs2_a($il,l) + a($il,$i2) 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 501,999 

$cs2_a($il,2) = $cs2_a($il,2) + a($il,$i2) 

END DO 

END DO 

DO $il'■ 2,999 
DO $p = 1,2 

$cs2_b($il,$p) = 0 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 2,500 

$cs2_b($il,D - $cs2_b($il,l) + b($il,$i2) 
END DO 

END DO 

103 



DO $il = 2,999 

DO $i2 = 501,999 

$cs2_b($il,2) = $cs2_b($il,2) + b($il,$i2) 

END DO 

END DO 

DO k = 1,100 

DO i = 2,999 

$cs2_a(i,l) = ($cs2_b(i - 1,1) + $cs2_b(i + 1,1) + $cs2_b(i,l 

1 ) + (b(i,2 - 1) - b(i,500 - 1)) + $cs2_b(i,l) + (b(i,500 + 1) 

2 - b(i,2 + 1))) / 4 

$cs2_a(i,2) = ($cs2_b(i - 1,2) + $cs2_b(i + 1,2) + $cs2_b(i,2 

1 ) + (b(i,501 - 1) - b(i,999 - D) + $cs2_b(i,2) + (b(i,999 + 

2 1) - b(i,501 + 1))) / 4 

END DO 

DO j = 2,999 

DO i = 2,999 

a(i,j) = (b(i - l,j) + b(i + l,j) + b(i,j - 1) + b(i,j + 1) 

1     ) / 4 

END DO 

END DO 

DO i = 2,999 

$cs2_b(i,l) = $cs2_a(i,l) 

$cs2_b(i,2) = $cs2_a(i,2) 

END DO 

DO j = 2,999 

DO i = 2,999 

b(i,j) = a(i,j) 

END DO 

END DO 

END DO 

DO $il = 2,999 

DO $p = 1,2 

$T($il,$p) = 0 

END DO 

END DO 

DO $il"= 2,999 

DO $i2 = 2,500 

$T($il,l) = $T($il,l) + a($il,$i2) 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 501,999 

$T($il,2) = $T($il,2) + a($il,$i2) 

END DO 

END DO 
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DO $il = 2,999 

DO $p = 1,2 

IF (compare($T($il,$p),$cs2_a($il,$p)) .EQ. 1) CALL error_han 

1    dlerO 

END DO 

END DO 

DO $il = 2,999 

DO $p = 1,2 

$T_0($il,$p) = 0 

END DO 

END DO 

DO $il = 2,999 

DO $i2 = 2,500 

$T_0($il,l) = $T_0($il,l) + b($il,$i2) 

END DO 

END DO 

DO $il = 2,999 
DO $i2 = 501,999 

$T_0($il,2) = $T_0($il,2) + b($il,$i2) 
END-DO 

END DO 
DO $il = 2,999 

DO $p = 1,2 
IF (compare($T_0($il,$p),$cs2_b($il,$p))   .EQ.   1)  CALL error_h 

1 andlerO 
END DO 

END DO 
END 

A.3    ADI Integration 

A.3.1    Input 

program ADI2d 

implicit none 

integer N, maxiter 

parameter (N = 256, maxiter = 100) 

double precision u(256,256), uh(256,256), b(256,256), alpha 

integer i, j, k 

!hpf$ processors p(8) 

!hpf$ distribute (block,*) onto p :: u,uh,b 

c     *** Initial value for u 

do j - 1, 256 
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do i = 1, 256 

u(i,j) = 0.0 

enddo 

u(l,j) = 30-° 
u(256,j) = 30.0 

enddo 

*** Initialize uh 

do j = 1, 256 

do i = 1, 256 

uh(i,j) = u(i,j) 

enddo 

enddo 

alpha = 4 * (2.0 / 256) 

do k = 1, 100 

*** Forward and backward sweeps along columns 

do j = 2, 255 

do i = 2, 255 

b(i,j) = (2 + alpha) 

uh(i,j) = (alpha - 2) * u(i,j) + u(i,j+D + u(i,j-l) 

enddo 

enddo 

do j =2, 255 

uh(2,j) = uh(2,j) + u(l,j) 

uh(255,j) = uh(255,j) + u(256,j) 
enddo 

do j =2, 255 

do i = 3, 255 

b(i,j) = b(i,j) " 1 / b(i-l.j) 

uh(i,j) = uh(i,j) + uh(i-l.j) / b(i-l,j) 
enddo 

enddo 

do j =2, 255 

uh(255,j) = uh(255,j) / b(255,j) 

enddo 

do j =2, 255 

do i = 254, 2, -1 
uh(i,j) - (uh(i,j) + uh(i+l,j)) / b(i,j)' 

enddo 

enddo 

*** Forward and backward sweeps along rows 

do j = 2, 255 

106 



do i = 2, 255 

b(i,j) = (2 + alpha) 

u(i,j) = (alpha - 2) * uh(i.j) + uh(i+l,j) + uh(i-l.j) 
enddo 

enddo 

do i = 2, 255 

u(i,2) = u(i,2) + uh(i,l) 

u(i,255) = u(i,255) + uh(i,256) 

enddo 

do j =3, 255 

do i = 2, 255 

b(i,j) = b(i,j) - 1 / b(i.j-l) 
u(i,j) = u(i,j) + u(i,j-l) / b(i,j-l) 

enddo 

enddo 

do i = 2, 255 

u(i,255) = u(i,255) / b(i,255) 

enddo 

do j = 254, 2, -1 

do i = 2, 255 

u(i,j) = (u(i,j) + u(i,j+l)) / b(i,j) 
enddo 

enddo 

enddo 

end 

A. 3.2 Output 

PROGRAM adi2d 

IMPLICIT NONE 

DOUBLE PRECISION $T_3(256) 

DOUBLE PRECISION $T_2(8,256) 

DOUBLE PRECISION $T_1(256) 

DOUBLE PRECISION $T_0(8,256) 

DOUBLE PRECISION $T(256) 

INTEGER $p 

INTEGER $i2 

INTEGER $il 

DOUBLE PRECISION $csl_u(8,256) 

DOUBLE PRECISION $csl_uh(8,256) 

DOUBLE PRECISION $cs2_b(256) 

DOUBLE PRECISION $cs2_uh(256) 

DOUBLE PRECISION $cs2_u(256) 

DOUBLE PRECISION $b(256,256) 
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DOUBLE PRECISION $uh(256,256) 

DOUBLE PRECISION $u(256,256) 

INTEGER n 

INTEGER maxiter 

PARAMETERS = 256, maxiter = 100) 

DOUBLE PRECISION u(256,256) 

DOUBLE PRECISION uh(256,256) 

DOUBLE PRECISION b(256,256) 

DOUBLE PRECISION alpha 

INTEGER i, j, k 

!HPF$ PROCESSORS :: p(8) 

!HPF$ DISTRIBUTE (BLOCK, *) ONTO p :: u, uh, b 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p :: template$0(256, 256) 

!HPF$ ALIGN (hpf$0,:) WITH template$0(hpf$0 + 32,:) WRAP :: $b 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p :: template$l(256, 256) 

!HPF$ ALIGN (hpf$0,:) WITH template$l(hpf$0 + 32,:) WRAP :: $uh 

!HPF$ TEMPLATE, DISTRIBUTE (BLOCK, *) ONTO p :: template$2(256, 256) 

!HPF$ ALIGN (hpf$0,:) WITH template$2(hpf$0 + 32,:) WRAP :: $u 

!HPF$ TEMPLATE, DISTRIBUTE(BLOCK,*) ONTO p :: TEMPLATE$3(8,256) 

!HPF$ ALIGN $csl_u(hpf$0,:) WITH TEMPLATE$3(hpf$0+1,:) WRAP 

!HPF$ TEMPLATE, DISTRIBUTEtBLOCK,*) ONTO p :: TEMPLATE$4(8,256) 

!HPF$ ALIGN $csl_uh(hpf$0,:) WITH TEMPLATE$4(hpf$0+1,:) WRAP 

DO $il = 2,255 

DO $i2 = 1,256 

$uh($il,$i2) = uh($il,$i2) 

END DO 

END DO 

DO $il = 1,256 

DO $i2 = 1,256 

$u($il,$i2) = u($il,$i2) 

END DO 

END DO 

DO $il = 1,256 

$cs2_u($il) = 0 

END DO 

DO $il = 1,256 

DO $i2 = 1,256 
$cs2_u($il) = $cs2_u($il) + u($il,$i2) 

END DO 

END DO 

DO i = 1,256 

$cs2_u(i) = (256 - 1 + 1) * 0.0 

END DO 
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DO j = 1,256 

DO i = 1,256 

u(i,j) = 0.0 

END DO 

END DO 

$cs2_u(256) = (256 - 1 + 1) * 30.0 

DO j = 1,256 

u(256,j) = 30.0 

END DO 

$cs2_u(l) = (256 - 1 + 1) * 30.0 

DO j = 1,256 

u(l,j) = 30.0 

END DO 

DO i = 1,256 

$cs2_uh(i) = $cs2_u(i) 

END DO 

DO j = 1,256 

DO i = 1,256 

uh(i,j) = u(i,j) 

END DO 

END DO 

alpha = 4 * (2.0 / 256) 

DO k = 1,100 

DO i = 2,255- ' 

$cs2_b(i) = ((255 - 2 + 1) * (2 + alpha)) 

END DO 

DO j = 2,255 

DO i = 2,255 

b(i,j) = (2 + alpha) 

END DO 

END DO 

DO $il = 2,255 

$cs2_u($il) = 0 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$cs2_u($il) = $cs2_u($il) + u($il,$i2) 

END DO 

END DO 

DO i = 2,255 
$cs2_uh(i) = (alpha - 2) * $cs2_u(i) + ($cs2_u(i) + u(i,256) 

- u(i,2)) + ($cs2_u(i) - u(i,255) + u(i,l)) 

END DO 

DO j = 2,255 

DO i = 2,255 
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uh(i,j) = (alpha - 2) * u(i,j) + u(i,j + 1) + u(i,j - 1) 

END DO 

END DO 

$cs2_uh(l) = $cs2_uh(l) - $uh(l,l) 

$cs2_u(l) = 0 

DO $i2 = 2,255 

$cs2_u(l) = $cs2_u(l) + u(l,$i2) 

END DO 

$cs2_uh(2) = $cs2_uh(2) + $cs2_u(l) 

DO j = 2,255 

uh(2,j) = uh(2,j) + u(l,j) 
END DO 

DO $il = 1,254 

$cs2_uh($il) = $cs2_uh($il) - $uh($il,l) 

END DO 

$cs2_u(256) = 0 

DO $i2 = 2,255 

$cs2_u(256) = $cs2_u(256) + u(256,$i2) 

END DO 
$cs2_uh(255) = $cs2_uh(255) + $cs2_u(256) 

DO j = 2,255 

uh(255,j) = uh(255,j) + u(256,j) 

END DO 

DO $il = 2,255 

DO $i2 =2,255 

$b($il,$i2) = b($il,$i2) 

END DO 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$uh($il,$i2) = uh($il,$i2) 

END DO 

END DO 

DO $il = 2,255 

$T($il) = 0 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$T($il) = $T($il) + b($il,$i2) 

END DO 

END DO 

DO $il = 2,255 
IF (compare($T($il),$cs2_b($il)) .Eq. 1) CALL error_b.andler() 

END DO 

DO j = 2,255 
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DO i = 3,255 

$b(i,j) = $b(i,j) - 1 / $b(i - l,j) 
b(i,j) = b(i,j) - 1 / b(i - l,j) 

$uh(i,j) = $uh(i,j) + $ub(i - l,j) / $b(i - l,j) 

uh(i,j) = uh(i,j) + uh(i - l,j) / b(i - l,j) 

END DO 

END DO 

DO j = 2,255 

$uh(255,j) = $uh(255,j) / $b(255,j) 

uh(255,j) = uh(255,j) / b(255,j) 

END DO 

DO j = 2,255 

DO i = 254,2, -1 

$uh(i,j) = ($uh(i,j) + $uh(i + l,j)) / $b(i,j) 

uh(i,j) = (uh(i.j) + uh(i + l,j)) / b(i,j) 

END DO 

END DO 

DO i = 2,255 
$cs2_b(i) = ((255 - 2 + 1) * (2 + alpha)) 

END DO 

DO j = 2,255 

DO i = 2,255 

b(i,j) = (2 + alpha) 

END DO 

END DO 

DO $il = 2,255 

$cs2_uh($il) = 0 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$cs2_uh($il) = $cs2_uh($il) + uh($il,$i2) 

END DO 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

IF (compare($uh($il,$i2),uh($il,$i2))   .EQ.   1)  CALL error.ha 
ndlerO 

END DO 
END DO 
DO i = 2,255 

$cs2_u(i) =  (alpha - 2)  * $cs2_uh(i) + $cs2_uh(i + 1)  + $cs2_ 
uh(i - 1) 

END DO 
DO j  = 2,255 

DO i = 2,255 
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u(i,j) = (alpha - 2) * uh(i,j) + uh(i + l,j) + uh(i - l,j) 

END DO 

END' DO 

DO $p = 1,8 

$csl_uh($p,l) = 0 

END DO 

DO $il = 2,32 

$csl_uh(l,l) = $csl_uh(l,l) + uh($il,l) 

END DO 

DO $il = 1,32 

DO $p = 2,7 
$csl_uh($p,l) = $csl_uh($p,l) + uh(($p - 1) * 32 + $il,l) 

END DO 

END DO 

DO $il = 225,255 

$csl_uh(8,l) = $csl_uh(8,l) + uh($il,l) 

END DO 

DO $p = 1,8 

$csl_u($p,2) = 0 

END DO 

DO $il = 2,32 
$csl_u(l,2) = $csl_u(l,2) + u($il,2) 

END DO 

DO $il = 1,32 

DO $p = 2,7 
$csl_u($p,2) = $csl_u($p,2) + u(($p - 1) * 32 + $il,2) 

END DO 

END DO 

DO $il = 225,255 

$csl_u(8,2) = $csl_u(8,2) + u($il,2) 

END DO 

$csl_u(l,2) = $csl_u(l,2) + $csl_uh(l,l) 

DO $p = 2,7 
$csl_u($p,2) = $csl_u($p,2) + $csl_uh($p,l) 

END DO 

$csl_u(8,2) = $csl_u(8,2) + $csl_uh(8,l) 

DO i = 2,255 

u(i,2) = u(i,2) + uh(i,l) 

END DO 

DO $p = 1,8 

$csl_uh($p,256) = 0 

END DO 

DO $il = 2,32 
$csl_uh(1,256) = $csl_uh(1,256) + uh($il,256) 

END DO 
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DO $il = 1,32 

DO $p = 2,7 

$csl_uh($p,256) = $csl_uh($p,256) + uh(($p - 1) * 32 + $il, 

256) 

END DO 

END DO 

DO $il = 225,255 

$csl_uh(8,256) = $csl_uli(8,256) + uh($il,256) 

END DO 

DO $p = 1,8 

$csl_u($p,255) = 0 

END DO 

DO $il = 2,32 

$csl_u(l,255) = $csl_u(l,255) + u($il,255) 

END DO 

DO $il = 1,32 

DO $p = 2,7 

$csl_u($p,255) = $csl_u($p,255) + u(($p - 1) * 32 + $il,255 

) 
END DO 

END DO 

DO $il = 225,255 

$csl_u(8,255) = $csl_u(8,255) + u($il,255) 

END DO 

$csl_u(l,255) = $csl_u(l,255) + $csl_uh(l,256) 

DO $p = 2,7 

$csl_u($p,255) = $csl_u($p,255) + $csl_ub.($p,256) 

END DO 

$csl_u(8,255) = $csl_u(8,255) + $csl_uh(8,256) 

DO i = 2,255 

u(i,255) = u(i,255) + uh(i,256) 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$b($il,$i2) = b($il,$i2) 

END DO 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$u($il,$i2) = u($il,$i2) 

END DO 

END DO 

DO $p = 1,8 

$T_0($p,2) = 0 

END DO 
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DO $il = 2,32 

$T_0(1,2) = $T_0(1,2) + u($il,2) 

END DO 

DO $il = 1,32 

DO $p = 2,7 

$T_0($p,2) = $T_0($p,2) + u(($p - 1) * 32 + $il,2) 

END DO 

END DO 

DO $il = 225,255 

$T_0(8,2) = $T_0(8,2) + u($il,2) 

END DO 

DO $p = 1,8 

IF (compare($T_0($p,2),$csl_u($p,2))   .EQ.   1)  CALL errorjiandl 
er() 

END DO 
DO $il = 2,255 

$T_l($il)  = 0 
END DO 
DO $il = 2,255 

DO $i2 = 2,255 
$T_l($il)  = $T_l($il) + b($il,$i2) 

END DO 

END DO 

DO $il = 2,255 

IF (compare($T_l($il),$cs2_b($il)) .EQ. 1) CALL error.handler 

0 
END DO 

DO j = 3,255 

DO i = 2,255 

$b(i,j) = $b(i,j) - 1 / $b(i,j - 1) 

b(i,j) = b(i,j) - 1 / b(i,j - 1) 

$u(i,j) = $u(i,j) + $u(i,j - 1) / $b(i,j - 1) 

u(i,j) = u(i,j) + u(i,j - 1) / b(i,j - 1) 

END DO 

END DO 

DO i = 2,255 

$u(i,255) = $u(i,255) / $b(i,255) 

u(i,255) = u(i,255) / b(i,255) 

END DO 

DO j = 254,2, -1 

DO i = 2,255 

$u(i,j) = ($u(i,j) + $u(i,j + D) / $b(i,j) 

u(i,j) = (u(i,j) + u(i,j + 1)) / b(i,j) 

END DO 

END DO 
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END DO 

DO $il = 225,255 

$T_2(8,1) = $T_2(8,1) + uh($il,l) 

END DO 

DO $p = 1,8 
IF  (compare($T_2($p,l) ,$csl_uh($p,D)   .EQ.   1)  CALL errorjiandle 

1      r() 
END DO 
DO $il = 2,255 

$T_3($il) = 0 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 

$T_3($il) = $T_3($il) + uh($il,$i2) 

END DO 

END DO 

DO $il = 2,255 
IF (compare($T_3($il),$cs2_uh($il)) .EQ. 1) CALL error.handler( 

1  ) 
END DO 

DO $il = 2,255 

DO $i2 = 2,255 
IF (compare($uh($il,$i2),uh($il,$i2)) .EQ. 1) CALL error_hand 

1    lerO 

END DO 

END DO 

DO $il = 2,255 

DO $i2 = 2,255 
IF (compare($u($il,$i2),u($il,$i2)) .Eq. 1) CALL errorjiandle 

1    r() 

END DO 

END DO 

END 
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